Advertisement

Moscow University Chemistry Bulletin

, Volume 73, Issue 3, pp 91–98 | Cite as

Obtaining Tritium-Labeled Amikacin and Its Adsorption Immobilization on Functionalized Nanodiamonds

  • A. S. Solomatin
  • R. Y. Yakovlev
  • N. B. Leonidov
  • G. A. Badun
  • M. G. Chernysheva
  • I. I. Kulakova
  • A. N. Stavrianidi
  • O. A. Shlyakhtin
  • G. V. Lisichkin
Article
  • 4 Downloads

Abstract

The effect of the chemical nature of the surface of detonation nanodiamond on the adsorption of an antibiotic is revealed with the help of tritium-labeled amikacin. It is found that nanodiamonds with a carboxylated surface (Ssp = 283 ± 5 m2/g) chemisorbed twice as much amikacin as nanodiamonds with a hydrogenated surface (Ssp = 289 ± 5 m2/g): 48 and 22 mg/g, respectively. Maintaining nanodiamonds with immobilized amikacin in the form of hydrosol for 1 month results in a release of up to 9.6 and 6.4 mg/g of the antibiotic, respectively. The results demonstrate the possibility of creating an amikacin delivery system based on nanodiamonds.

Keywords

nanodiamond amikacin tritium-labeled compounds adsorption drug delivery system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Freitas, R.A., Nanomedicine, vol. 1: Basic Capabilities, Georgetown, TX: Landes Bioscience, 1999.Google Scholar
  2. 2.
    Nanoterapeutics: Drug Delivery Concepts in Nanoscience, Lamprecht, A., Ed., Singapore: Pan Stanford, 2009.Google Scholar
  3. 3.
    Cheng, L.C., Jiang, X., Wang, J., Chen, C., and Liu, R.S., Nanoscale, 2013, vol. 5, no. 9, p. 3547.CrossRefGoogle Scholar
  4. 4.
    Say, J.M., Vreden, C., Reilly, D.J., Brown, L.J., Rabeau, J.R., and King, N.J.C., Biophys. Rev., 2011, vol. 3, p.3.CrossRefGoogle Scholar
  5. 5.
    Zhang, X., Hu, W., Li, J., Tao, L., and Wei, Y., Toxicol. Res., 2012, vol. 1, p.3.CrossRefGoogle Scholar
  6. 6.
    Kaur, R. and Badea, I., Int. J. Nanomed., 2013, vol. 8, p.3.Google Scholar
  7. 7.
    Perevedentseva, E., Lin, Y.C., Jani, M., and Cheng, C.L., Nanomedicine, 2013, vol. 8, no. 12, p. 2041.CrossRefGoogle Scholar
  8. 8.
    Yakovlev, R.Y., Solomatin, A.S., Leonidov, N.B., Kulakova, I.I., and Lisichkin, G.V., Russ. J. Gen. Chem., 2014, vol. 84, no. 2, p.379.CrossRefGoogle Scholar
  9. 9.
    Carbon Nanomaterials Sourcebook: Graphene, Fullerenes, Nanotubes, and Nanodiamond, Sattler, K.D., Ed. Boca Raton: CRC, 2016, vol.1.Google Scholar
  10. 10.
    Kulakova, I.I., Phys. Solid State, 2004, vol. 46, no. 4, p.636.CrossRefGoogle Scholar
  11. 11.
    Kulakova, I.I., Korol’kov, V.V., Yakovlev, R.Yu., and Lisichkin, G.V., Nanotechnol. Russ., 2010, vol. 5, nos. 7–8, p.474.CrossRefGoogle Scholar
  12. 12.
    Kulakova, I.I., Ross. Khim. Zh., 2004, vol. 48, no. 5. p.97.Google Scholar
  13. 13.
    Krueger, A., J. Mater. Chem., 2008, vol. 18, p. 3.CrossRefGoogle Scholar
  14. 14.
    Shenderova, O.A. and McGuire, G.E., Biointerphases, 2015, vol. 10, no. 3, 030802.CrossRefGoogle Scholar
  15. 15.
    Liu, K.K., Zheng, W.W., Wang, C.C., Chiu, Y.C., Cheng, C.L., Lo, Y.S., Chen, C., and Chao, J.I., Nanotecnology, 2010, vol. 21, 315106.CrossRefGoogle Scholar
  16. 16.
    Shugalei, I.V., Voznyakovskii, A.P., Garabadzhiu, A.V., Tselinskii, I.V., Sudarikov, A.M., and Ilyushin, M.A., Russ. J. Gen. Chem., 2013, vol. 83, no. 5, p.851.CrossRefGoogle Scholar
  17. 17.
    Rodina, E.V., Valueva, A.V., Yakovlev, R.Y., Vorobyeva, N.N., Kulakova, I.I., Lisichkin, G.V., and Leonidov, N.B., Biointerphases, 2015, vol. 10, no. 4, 041005.CrossRefGoogle Scholar
  18. 18.
    Chen, M., Pierstorff, E.D., Lam, R., Li, S.Y., Huang, H., Osawa, E., and Ho, D., ACS Nano, 2009, vol. 3, p. 3.Google Scholar
  19. 19.
    Chow, E.K., Zhang, X.Q., Chen, M., Lam, R., Robinson, E., Huang, H., Schaffer, D., Osawa, E., Goga, A., and Ho, D., Sci. Trans. Med., 2011, vol. 3, no. 73, p.73.CrossRefGoogle Scholar
  20. 20.
    Pham, D., Fattal, E., and Tsapis, N., Int. J. Pharmacol., 2015, vol. 478, p.3.CrossRefGoogle Scholar
  21. 21.
    Xie, J., Talaska, A.E., and Schacht, J., Hear. Res., 2011, vol. 281, p.3.CrossRefGoogle Scholar
  22. 22.
    Brummetti, R.E. and Fox, K.E., Antimicrob. Agents Chemother., 1989, vol. 33, no. 6, p.797.CrossRefGoogle Scholar
  23. 23.
    Turnidge, J., Infect. Dis. Clin. North Am., 2003, vol. 7, p.3.Google Scholar
  24. 24.
    Hottendorf, G.H. and Gordon, L.L., Antimicrob. Agents Chemother., 1980, vol. 18, no. 1, p.176.CrossRefGoogle Scholar
  25. 25.
    Yakovlev, R.Y., Leonidov, N.B., and Gubanok, A.I., RF Patent 2476215, 2012.Google Scholar
  26. 26.
    Handbook of Radioactivity Analysis, L’Annunziata, M.F., Ed., Amsterdam: Elsevier, 2012, 3rd ed.Google Scholar
  27. 27.
    Feinendegen, L.E., Tritium-Labeled Molecules in Biology and Medicine, New York: Academic, 1967.Google Scholar
  28. 28.
    Badun, G.A., Chernysheva, M.G., Tyasto, Z.A., Kulikova, N.A., Kudryavtsev, A.V., and Perminova, I.V., Radiochim. Acta, 2010, vol. 98, no. 3, p.161.CrossRefGoogle Scholar
  29. 29.
    Badun, G.A., Chernysheva, M.G., Grigorieva, A.V., Eremina, E.A., and Egorov, A.V., Radiochim. Acta, 2016, vol. 104, no. 8, p.593.CrossRefGoogle Scholar
  30. 30.
    Badun, G.A., Chernysheva, M.G., Yakovlev, R.Yu., Leonidov, N.B., Semenenko, M.N., and Lisichkin, G.V., Radiochim. Acta, 2014, vol. 102, no. 10, p.941.CrossRefGoogle Scholar
  31. 31.
    Yakovlev, R.Yu., Solomatin, A.S., Kulakova, I.I., Lisichkin, G.V., Korolev, K.M., and Leonidov, N.B., RF Patent 2506095, 2012.Google Scholar
  32. 32.
    Korolkov, V.V., Kulakova, I.I., Tarasevich, B.N., and Lisichkin, G.V., Diamond Relat. Mater., 2007, vol. 16, p. 3.CrossRefGoogle Scholar
  33. 33.
    Ushizawa, K., Sato, Y., Mitsumori, T., Machinami, T., Ueda, T., and Ando, T., Chem. Phys. Lett., 2002, vol. 351, p.3.CrossRefGoogle Scholar
  34. 34.
    Yakovlev, R.Y., Osipova, A.S., Solomatin, A.S., Kulakova, I.I., Murav’eva, G.P., Avramenko, N.V., Leonidov, N.B., and Lisichkin, G.V., Russ. J. Gen. Chem., 2015, vol. 85, no. 6, p. 1565.CrossRefGoogle Scholar
  35. 35.
    Badun, G.A., Chernysheva, M.G., and Ksenofontov, A.L., Radiochim. Acta, 2012, vol. 100, p.3.CrossRefGoogle Scholar
  36. 36.
    Amikacin, P., 1, p.533.Google Scholar
  37. 37.
    Chernysheva, M.G., Myasnikov, I.Y., and Badun, G.A., Diamond Relat. Mater., 2015, vol. 55, p.3.CrossRefGoogle Scholar
  38. 38.
    Pretsch, E., Buhlmann, P., and Affolter, C., Structure Determination of Organic Compounds. Tables of Spectral Data, New York: Springer, 2000, 3rd ed.CrossRefGoogle Scholar
  39. 39.
    Silverstein, R.M., Webster, F.X., Kiemle, D.J., and Bryce, D.L., Spectrometric Identification of Organic Compounds, New York: Wiley, 2015.Google Scholar
  40. 40.
    Solomatin, A.S., Yakovlev, R.Y., Fedotcheva, N.I., Kondrachova, M.N., and Leonidov, N.B., RF Patent 2538611, 2013.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. S. Solomatin
    • 1
    • 2
  • R. Y. Yakovlev
    • 2
    • 3
  • N. B. Leonidov
    • 2
  • G. A. Badun
    • 1
  • M. G. Chernysheva
    • 1
  • I. I. Kulakova
    • 1
  • A. N. Stavrianidi
    • 1
  • O. A. Shlyakhtin
    • 1
  • G. V. Lisichkin
    • 1
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Ryazan State Medical UniversityRyazanRussia
  3. 3.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations