Advertisement

Moscow University Chemistry Bulletin

, Volume 73, Issue 2, pp 74–79 | Cite as

Multifunctional Lipoamino Acid Derivatives with Potential Biological Activity

  • V. V. Marusova (Soloveva)
  • R. I. Zagitova
  • U. A. Budanova
  • Yu. L. Sebyakin
Article
  • 6 Downloads

Abstract

This work aims to develop a number of multifunctional derivatives of lipoamino acids, which potentially have different biological activities. To achieve this aim, the hydrophilic-lipophilic balance for a number of cationic amphiphile structures based on L-glutamic acid and short diamines is theoretically calculated. The developed schemes and performed synthesis allowed us to produce preparative sample quantities for further physicochemical and biological tests. The performed calculations, measurements, and experiments on the liposomal dispersions of the synthesized compounds demonstrate the possibility of designing the same type of structures of an amphiphilic nature based on aliphatic amino acid derivatives and diamines, which can be used both in antibacterial therapy and as the delivery vehicles for genetic material.

Keywords

lipoamino acids diamines aliphatic derivatives of L-glutamic acid cationic liposomes hydrophilic- lipophilic balance cationic amphiphiles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akhtar, N. and Khan, R.A., Prog. Lipid Res., 2016, vol. 64, p.192.CrossRefGoogle Scholar
  2. 2.
    Pouton, C.W., Eur. J. Pharm. Sci., 2000, vol. 11, no. 2, p.93.CrossRefGoogle Scholar
  3. 3.
    Trivedi, R. and Kompella, U.B., Nanomedicine (London, U. K.), 2010, vol. 5, no. 3, p.485.CrossRefGoogle Scholar
  4. 4.
    Baryshnikov, A.Yu., Vestn. Ross. Akad. Med. Nauk, 2012, no. 3, p.23.CrossRefGoogle Scholar
  5. 5.
    Bulbake, U., et al., Pharmaceutics, 2017, vol. 9, no. 2, p.1.Google Scholar
  6. 6.
    Szymanowski, J. and Hiron, C.G., J. Chem. Technol. Biotechnol., 1984, p.218.Google Scholar
  7. 7.
    Rabotkina, M.A. and Sebyakin, Yu.L., Biofarm. Zh., 2011, vol. 34, no. 3, p.21.Google Scholar
  8. 8.
    Zhen, M. and Peng, Y., Org. Biomol. Chem., 2016, vol. 14, no. 13, p. 3443.CrossRefGoogle Scholar
  9. 9.
    Lastovskii, R.P., Kolpakova, I.D., and Ivanova, N.I., Metody Poluch. Khim. Reakt. Prep., 1962, p.60.Google Scholar
  10. 10.
    Patel, H.M., FEBS Lett., 1990, vol. 275, nos. 1–2, p.242.CrossRefGoogle Scholar
  11. 11.
    Gabizon, A.A., Liposomal drug carriers in cancer therapy, in Nanoparticulates as Drug Carriers, Torchilin, V.P., Ed., London: Imperial College, 2006, p.437.Google Scholar
  12. 12.
    Oliver, M., et al., Environ. Sci. Technol., 2016, vol. 50, no. 13, p. 7135.CrossRefGoogle Scholar
  13. 13.
    Koloskova, O.O., et al., Mendeleev Commun., 2014, vol. 24, p. 262.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. V. Marusova (Soloveva)
    • 1
  • R. I. Zagitova
    • 1
  • U. A. Budanova
    • 1
  • Yu. L. Sebyakin
    • 1
  1. 1.Moscow Technological University (Moscow State University of Fine Chemical Technologies)MoscowRussia

Personalised recommendations