Moscow University Chemistry Bulletin

, Volume 71, Issue 2, pp 110–115 | Cite as

Oriented immobilization of antibodies and their fragments on modified silicon for the production of nanosensors

  • G. V. PresnovaEmail author
  • D. E. Presnov
  • V. G. Grigorenko
  • A. M. Egorov
  • M. Yu. Rubtsova


Different methods for the covalent immobilization of specific antibodies and their fragments on a silicon surface with the subsequent formation of immune complexes that consist of an immobilized monoclonal antibody, an antigen molecule, and a molecule of a second monoclonal antibody labeled with gold nanoparticles have been studied. Prostate-specific antigen (PSA), which is a molecular biomarker for prostate cancer, was used as an antigen. A covalent conjugate of the fragments of PSA-specific antibodies with gold nanoparticles has been obtained using the thiol groups of the antibodies. Scanning electron microscopy (SEM) was used for the registration of immune complexes on the surface. The high resolution of the method made it possible to detect individual immune complexes by the presence of gold nanoparticles and to calculate their number. A new method for the chemical modification of silicon by 3-aminopropyltrimetoxysilane (APTMS) and a bifunctional reagent 1,4-phenylene diisothiocyanate (PDITC) has been developed. This method provides a uniform distribution of antigen-binding centers and their availability for the formation of immune complexes. The developed immobilization method is promising for the formation of a biospecific biosensor layer based on silicon nanowires.


specific antibodies antigen-antibody interaction gold nanoparticles prostate-specific antigen scanning electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Curreli, M., Zhang, R., Ishikawa, F.N., Chang, H.K., Cote, R.J., Zhou, C., and Thompson, M.E., IEEE Trans. Nanotechnol., 2008, vol. 7, p. 651.CrossRefGoogle Scholar
  2. 2.
    Cui, Y., Wei, Q., Park, H., and Lieber, C.M., Science, 2001, vol. 293, p. 1289.CrossRefGoogle Scholar
  3. 3.
    Patolsky, F., Zheng, G., and Lieber, C.M., Nat. Protoc., 2006, vol. 1, p. 1711.CrossRefGoogle Scholar
  4. 4.
    Fiorini, G.S. and Chiu, D.T., BioTechniques, 2005, vol. 38, p. 429.CrossRefGoogle Scholar
  5. 5.
    Ray, S., Reddy, P.J., Choudhary, S., Raghu, D., and Srivastava, S., J. Proteomics, 2011, vol. 74, p. 2660.CrossRefGoogle Scholar
  6. 6.
    Archakov, A.I., Ivanov, Y.D., Lisitsa, A.V., and Zgoda, V.G., Proteomics, 2007, vol. 7, p. 4.CrossRefGoogle Scholar
  7. 7.
    Ivanov, Yu.D., Uchaikin, V.F., Pleshakova, T.O., Frantsuzov, P.A., Svetlov, S.K., and Konev, V.A., Fiziol. Patol. Immunnoi Sist., 2006, vol. 10, p. 11.Google Scholar
  8. 8.
    Bally, M. and Vörös, J., Nanomedicine, 2009, vol. 4, p. 447CrossRefGoogle Scholar
  9. 8.
    Wang, J., ChemPhysChem, 2009, vol. 10, p. 1748.CrossRefGoogle Scholar
  10. 9.
    Frens, G., Nature (London), Phys. Sci., 1973, vol. 241, p. 20.CrossRefGoogle Scholar
  11. 10.
    Karyakin, A.A., Presnova, G.V., Rubtsova, M.Yu., Egorov, A.M., Anal. Chem., 2000, vol. 72, p. 805.Google Scholar
  12. 11.
    Presnova, G.V., Rubtsova, M.Yu., Presnov, D.E., Grigorenko, V.G., Yaminsky, I.V., and Egorov, A.M., Biochemistry (Moscow), Suppl. Ser. B: Biomed. Chem., 2014, vol. 8, no. 2, p. 164.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • G. V. Presnova
    • 1
    Email author
  • D. E. Presnov
    • 2
    • 3
  • V. G. Grigorenko
    • 1
  • A. M. Egorov
    • 1
  • M. Yu. Rubtsova
    • 1
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  3. 3.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations