Moscow University Chemistry Bulletin

, Volume 65, Issue 3, pp 190–196 | Cite as

Stabilization of enzymes-antioxidants by complex and conjugate formation with block copolymers: Prospects for CNS treatment

  • S. V. Uglanova
  • M. V. Popov
  • V. S. Kurova
  • E. V. Batrakova
  • D. Manickam
  • A. V. Kabanov
  • N. L. Klyachko
Article

Abstract

Nanosized particles with a radius of 16 ± 2 nm based on complexes and conjugates of highly active superoxide dismutase and catalase with polyelectrolyte block copolymer poly(ethyleneimine)-poly(ethylene glycol) and similar bienzyme systems were obtained. Mass spectrometry was used to confirm the crosslinking of enzyme and block copolymer molecules in the nanoparticles that were formed. A significant increase of SOD and catalase stability (up to four times) towards proteolytic degradation under chymotrypsin and trypsin action for 3 h at 37°C was revealed when enzyme-containing nanoparticles were used for experiments. Antioxidant enzymes-containing polyelectrolyte nanoparticles seem to be promising for BBB penetration and CNS drug delivery.

Key words

antioxidant enzymes superoxide dismutase and catalase bienzyme system nanoparticles neuro-degenerative diseases polyelectrolyte enzyme stabilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sun, A.Y. and Young-Mei Chen, J. Biomed. Sci., 1998, vol. 5, p. 401.CrossRefGoogle Scholar
  2. 2.
    Abraham, S., Soundararajan, C.C., Vivekanadhan, S., and Behari, M., Indian J. Med. Res., 2005, vol. 121, p. 111.Google Scholar
  3. 3.
    McCord, J.M. and Fridovich, I., J. Biol. Chem., 1969, vol. 244, p. 6049.Google Scholar
  4. 4.
    Zamocky, M., Eur. J. Biochem., 2004, vol. 271, p. 3297.CrossRefGoogle Scholar
  5. 5.
    Gonzalez-Polo, R.A., Cell. Biol. Int., 2004, vol. 28, p. 373.CrossRefGoogle Scholar
  6. 6.
    Batrakova, E.V., Li S., Reynolds, A.D., Mosley, R.L., Bronich, T.K., Kabanov, A.V., and Gendelmann, H.E., Bioconjugate Chem., 2007, vol. 18, p. 1498.CrossRefGoogle Scholar
  7. 7.
    Beckman, J.S., Minor, R.L., White, C.W., Repine, J.E., Rosen, G.M., and Freeman, B.A., J. Biol. Chem., 1998, vol. 263, p. 6844.Google Scholar
  8. 8.
    Vinogradov, S.V., Bronich, T.K., and Kabanov, A.V., Bioconjugate Chem., 1998, vol. 9, p. 805.CrossRefGoogle Scholar
  9. 9.
    Sirsi, S.R., Williams, J., and Lutz, G.J., Hum. Gene Ther., 2005, vol. 16, p. 1.CrossRefGoogle Scholar
  10. 10.
    Janknegt, P., Rijstenbil, J.W., van de Poll, W.H., Gechev, T.S., and Buma, A.G.J., J. Photochem. Photobio. B., 2007, vol. 87, p. 218.CrossRefGoogle Scholar
  11. 11.
    Laemmli, U.K., Nature, 1970, vol. 227, p. 680.CrossRefGoogle Scholar
  12. 12.
    Reddy, M.K. and Labhasetwar, V., FASEB J., 2009, vol. 23, p. 1384.CrossRefGoogle Scholar
  13. 13.
    Simone, E.A., Dziubla, T.D., Arguiri, E., Vardon, V.V., Shuvaev, V.V., Christofidou-Solomidou, M., and Muzykantov, V.R., Pharm. Res., 2009, vol. 26, p. 250.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  • S. V. Uglanova
    • 1
  • M. V. Popov
    • 2
  • V. S. Kurova
    • 1
  • E. V. Batrakova
    • 3
  • D. Manickam
    • 3
  • A. V. Kabanov
    • 3
  • N. L. Klyachko
    • 2
  1. 1.Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Chemistry DepartmentMoscow State UniversityMoscowRussia
  3. 3.University of Nebraska Medical CenterOmahaUSA

Personalised recommendations