Advertisement

Mechanics of Solids

, Volume 51, Issue 2, pp 135–147 | Cite as

Analytical solution of the optimal attitude maneuver problem with a combined objective functional for a rigid body in the class of conical motions

Article
  • 23 Downloads

Abstract

The optimal attitude maneuver control problem without control constraints is studied in the quaternion statement for a rigid body with a spherical mass distribution. The performance criterion is given by a functional combining the time and energy used for the attitude maneuver. A new analytical solution in the class of conical motions is obtained for this problem on the basis of the Pontryagin maximum principle.

Keywords

rigid body spacecraft optimal attitude maneuver conical motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. N. Branets and I. P. Shmyglevskii, Application of Quaternions in Problems of Orientation of a Rigid Body (Nauka, Moscow, 1973) [in Russian].MATHGoogle Scholar
  2. 2.
    S. L. Scrivener and R. C. Thompson, “Survey of Time-Optimal Attitude Maneuvers,” J. Guid. Contr. Dynam. 17 (2), 225–233 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    Yu. N. Chelnokov, “Quaternion Solution of Kinematic Problems in Rigid Body Orientation Control — Equations of Motion, Problem Statement, Programmed Motion, and Control,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 7–14 (1993) [Mech. Solids (Engl. Transl.)].Google Scholar
  4. 4.
    V. N. Branets, M. B. Chertok, and Yu. V. Kaznacheev, “Optimal Attitude Maneuver of a Rigid Body with a Single Symmetry Axis,” Kosmich. Issledovaniya 22 (3), 352–360 (1984) [Cosmic Res. (Engl. Transl.)].Google Scholar
  5. 5.
    A. N. Sirotin, “Optimal Control of Retargeting of a Symmetrically Rigid Body from a Rest Position to a Rest Position,” Izv. Akad. Nauk SSSR.Mekh. Tverd. Tela, No. 1, 36–47 (1989) [Mech. Solids (Engl. Transl.)].ADSGoogle Scholar
  6. 6.
    A. N. Sirotin, “Time-Optimal Retargeting of a Rotating Spherically Symmetric Body with Stopping Its Motion,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 18–27 (1997) [Mech. Solids (Engl. Transl.) 32 (3), 14–21 (1997)].Google Scholar
  7. 7.
    A. V. Molodenkov, “Quaternion Solution of the Optimal Attitude Maneuver Problem for a Rigid Body with Spherical Distribution of Mass,” in Problems of Mechanics and Control. Collection of Scientific Papers (PGU, Perm, 1995), pp. 122–131 [in Russian].Google Scholar
  8. 8.
    A. V. Molodenkov, “Solution of the Optimal Attitude Maneuver Problem for a Spherically Symmetric Spacecraft in One Special Case,” in Proc. 6th Intern. Conf. “System Analysis and Control of Extraterrestrial Complexes”, Evpatoriya, Krym (MAI,Moscow, 2001), p. 42 [in Russian].Google Scholar
  9. 9.
    A. V. Molodenkov and Ya. G. Sapunkov, “A New Class of Analytical Solutions in the Optimal Attitude Maneuver Problem for a Spherically Symmetric Body,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 16–27 (2012) [Mech. Solids (Engl. Transl.) 47 (2), 167–177 (2012)].Google Scholar
  10. 10.
    A. V. Molodenkov and Ya. G. Sapunkov, “Solution of the Optimal Attitude Maneuver Problem for a Spherically Symmetric Rigid Body with Arbitrary Boundary Conditions in the Class of Generalized Conical Motions,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 22–34 (2014) [Mech. Solids (Engl. Transl.) 49 (5), 495–505 (2014)].MATHGoogle Scholar
  11. 11.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Fizmatgiz, Moscow, 1961; Gordon & Breach Sci. Publ., New York, 1986).Google Scholar
  12. 12.
    Yu. N. Chelnokov, Quaternion and BiquaternionModels andMethods ofMechanics of Rigid Body and Their Applications (Fizmatlit, Moscow, 2006) [in Russian].Google Scholar
  13. 13.
    A. V. Molodenkov, “On the Solution of the Darboux Problem,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 3–13 (2007) [Mech. Solids (Engl. Transl.) 42 (2), 167–176 (2007)].Google Scholar
  14. 14.
    Ya. G. Sapunkov and A.V. Molodenkov, “The Investigation of Characteristics of Distant Sounding Systemof the Earth with the Help of Cosmic Device,” “Numerical Solution of the Problem of Optimal Reorientation of a Rotating Spacecraft,” Supplement for Mekhatron. Avtomatiz. Upravl.: Avtomatich. Avtomatizir. Upr. Let. App. No. 6, 10–15 (2008).Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  1. 1.Institute for Precision Mechanics and ControlRussian Academy of SciencesSaratovRussia

Personalised recommendations