Advertisement

Mechanics of Solids

, Volume 50, Issue 6, pp 633–640 | Cite as

Experimental study of the influence of a triaxial stress state with unequal components on rock permeability

  • D. M. Klimov
  • V. I. Karev
  • Yu. F. Kovalenko
Article

Abstract

We present the experimental results of true triaxial independent loading test bench studies of the influence of a triaxial stress state with unequal components on the filtration properties of rock in oil and gas gathering mains. We show that the permeability of rock subjected to stresses can irreversibly decrease or increase. The discovered effects are of great importance when designing optimal oil and gas well drilling and operation regimes.

Keywords

rock test bench TILS permeability stresses deformation fracture creeping oil well oil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Karev and Yu. F. Kovalenko, “Triaxial Loading System as a Tool for Solving Geotechnical Problems of Oil and Gas Production,” in True Triaxial Testing of Rocks (CRC Press/Balkema, Leiden, 2013), pp. 301–310.Google Scholar
  2. 2.
    S. A. Khristianovich and Yu. P. Zheltov, “Hydraulic Rupture of an Oil Bed,” Izv. Akad. Nauk SSSR. OTN. No. 5, 3–41 (1955).Google Scholar
  3. 3.
    K. Terzaghi, Theoretical Soil Mechanics (John Wiley & Sons, New York, 1943; Gosstroiizdat, Moscow, 1961).CrossRefGoogle Scholar
  4. 4.
    A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (Cambridge Univ. Press, Cambridge, 1927; ONTI HKGiP SSSR,Moscow-Leningrad, 1935).zbMATHGoogle Scholar
  5. 5.
    V. I. Karev and Yu. F. Kovalenko, “Well Simulation on the Basis of Preliminary Triaxial Tests of Reservoir Rock,” in Rock mechanics for Resources, Energy, and Environment (CRC Press/Balkema, Leiden, 2013), pp. 935–940.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • D. M. Klimov
    • 1
  • V. I. Karev
    • 1
  • Yu. F. Kovalenko
    • 1
  1. 1.A. Ishlinsky Institute for Problems inMechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations