Mechanics of Solids

, Volume 47, Issue 5, pp 525–532 | Cite as

Comparison of micromodels describing the elastic properties of diamond

  • A. M. Krivtsov
  • O. S. Loboda
  • S. S. Khakalo


A mechanical model of diatomic crystal lattice with force interaction between atoms and angular interaction between bonds taken into account is proposed. Some relations between the macroscopic moduli of elasticity and the microparameters of the longitudinal rigidity of interatomic bonds and of the angular interaction rigidity are obtained for crystals with diamond lattice. Comparison with experimental data and with other theories describing similar lattices is conducted by using two constants at the microlevel.


elastic properties diamond structure angular interaction mechanical model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Born, “Zur Raumgittertheorie des Diamauten,” Ann. Phys. 44, 605–642 (1914).CrossRefGoogle Scholar
  2. 2.
    W. A. Harrison, “Scattering of Electrons by Lattice Vibrations in Crystals,” Ph. D. Dissertation (Univ. of Illinois, 1956).Google Scholar
  3. 3.
    H. Huntington, “The Elastic Properties of Crystals,” Uspekhi Fiz. Nauk 74(2), 303–352 (1961), Pt. 1; 74 (3), 461–520 (1961), Pt. 2.Google Scholar
  4. 4.
    P. N. Keating, “Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure,” Phys. Rev. Ser. 2 145(2), 637–645 (1966).Google Scholar
  5. 5.
    E. A. Ivanova, A. M. Krivtsov, N. F. Morozov, and A. D. Firsova, “Description of Crystal Packing of Particles with Torque Interaction,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 110–127 (2003) [Mech. Solids (Engl. Transl.) 38 (4), 76–88 (2003)].Google Scholar
  6. 6.
    E. A. Ivanova, A. M. Krivtsov, N. F. Morozov, and A. D. Firsova, Theoretical Mechanics. Description of Mechanical Properties of Crystalline Solids at Micro- and Macrolevel (Izd-vo SPbGPU, St.Petersburg, 2003) [in Russian].Google Scholar
  7. 7.
    E. A. Ivanova, A. M. Krivtsov, and N. F. Morozov, “Derivation of Macroscopic Relations of the Elasticity of Complex Crystal Lattices taking into Account the Moment Interactions at the Microlevel,” Prikl. Mat. Mekh. 71(4), 595–615 (2007) [J. Appl. Math. Mech. (Engl. Transl.) 71 (4), 543–561 (2007)].MathSciNetzbMATHGoogle Scholar
  8. 8.
    A. M. Krivtsov, Elastic Properties of Monoatomic and Diatomic Crystals, Manual (Izd-vo Politech. Univ., St. Petersburg, 2009) [in Russian].Google Scholar
  9. 9.
    I. E. Berinskii, N. G. Dvas, A. M. Krivtsov, et al. Theoretical Mechanics. Elastic Properties of Monoatomic and Diatomic Crystals (Izd-vo SPbGPU, St. Petersburg, 2009) [in Russian].Google Scholar
  10. 10.
    I. E. Berinskii, “Beam Model of Graphite Crystal Lattice,” Nauchno-Tekhn. Vedomosti SPbGTU, No. 3, 13–20 (2010).Google Scholar
  11. 11.
    V. A. Kuzkin and A. M. Krivtsov, “Description for Mechanical Properties of Graphene Using Particles with Rotational Degrees of Freedom,” Dokl. Ross. Akad. Nauk 440(4), 476–479 (2011) [Dokl. Phys. (Engl. Transl.) 56 (10), 527–530 (2011)].Google Scholar
  12. 12.
    A. M. Krivtsov and E. A. Podolskaya, “Modeling of Elastic Properties of Crystals with Hexagonal Close-Packed lattice,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 77–86 (2010) [Mech. Solids (Engl. Transl.) 45 (3), 370–378 (2010)].Google Scholar
  13. 13.
    A. M. Krivtsov and O. S. Loboda, “Description of Elastic Properties of Diatomic Crystals with Diamond and Sphalerite Structure by Using the Moment Interaction,” Fizich. Mezomekh. 15(2), 23–29 (2012) [Phys. Mesomech. (Engl. Transl.)].Google Scholar
  14. 14.
    R. V. Goldstein and A. V. Chentsov, “Discrete-Continuous Model of a Nanotube,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 57–74 (2005) [Mech. Solids (Engl. Transl.) 40 (4), 45–59 (2005)].Google Scholar
  15. 15.
    I. E. Berinskii and A. M. Krivtsov, “On Using Many-Particle Interatomic Potentials to Compute Elastic Properties of Graphene and Diamond,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 60–85 (2010) [Mech. Solids (Engl. Transl.) 45 (6), 815–834 (2010)].Google Scholar
  16. 16.
    H. J. McSkimin and W. L. Bond, “Elastic Moduli of Diamond,” Phys. Rev. 105(1), 116–121 (1957).ADSCrossRefGoogle Scholar
  17. 17.
    H. F. Markham, National Physical Laboratory Measurements Presented by Musgrave: Diamond Conf. Reading (1965).Google Scholar
  18. 18.
    H. J. McSkimin and P. Andreatch, “ElasticModuli of Diamond as a Function of Pressure and Temperature,” J. Appl. Phys. 43(7), 2944–2948 (1972).ADSCrossRefGoogle Scholar
  19. 19.
    M. H. Grimsditch and A. K. Ramdas, “Brillouin Scattering in Diamond,” Phys. Rev. B 11(8), 3139–3148 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    J. J. Gilman, “Origin of the Outstanding Mechanical Properties of Diamond,” Springer-Verlag, Mat. Res. Innovat. 6, 112–117 (2002).CrossRefGoogle Scholar
  21. 21.
    G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (MIT, Cambridge MA, 1971).Google Scholar
  22. 22.
    O. H. Nielsen and R. Martin, “Quantum-Mechanical Theory of Stress and Force,” Phys. Rev. B 32(6), 3780–3791 (1985).ADSCrossRefGoogle Scholar
  23. 23.
    S. P. Nikanorov and B. K. Kardashov, Elasticity and Dislocation Nonelasticity of Crystals (Nauka, Moscow, 1985) [in Russian].Google Scholar
  24. 24.
    D. G. Clerc, “Mechanical Hardness: Atomic-Level Calculations for Diamond-Like Materials,” J. Mat. Sci. Lett. 17(17), 1461–1462 (1990).CrossRefGoogle Scholar
  25. 25.
    S. Wei, D. C. Allan, and J. W. Wilkins, “Elastic Constants of a Si/Ge Superlattice and of Bulk Si and Ge,” Phys. Rev. 46, 12411–12420 (1992).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2012

Authors and Affiliations

  • A. M. Krivtsov
    • 1
  • O. S. Loboda
    • 2
  • S. S. Khakalo
    • 2
  1. 1.Institute for Problems in Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Saint-Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations