Advertisement

Mechanics of Solids

, Volume 45, Issue 3, pp 476–484 | Cite as

Effects of strain-rate strength dependence in nanosecond load duration range

  • Yu. V. Petrov
  • I. V. Smirnov
  • A. A. Utkin
Article

Abstract

On the basis of the structural-temporal approach, we explain the rapid increase in the spall strength and its stabilization in the nanosecond range of load duration, observed in several experiments. We give a detailed presentation of the method for describing the time-dependence of the spall strength. We obtain a qualitative coincidence of the computational curves and the experimental data and show that the strength significantly depends on the pulse parameters. An analysis of the obtained results allows us to conclude that it is incorrect to introduce a limit stress as the material “dynamic” strength by analogy with equilibrium processes; it is necessary to use the strength structural-temporal characteristics instead.

Key words

dynamic fracture pulse load spall strength dependence on the strain rate incubation processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Batani, V. I. Vovchenko, G. I. Kanel, et al., “Mechanical Properties of aMaterial at Ultrahigh Strain Rates Induced by a Laser Shock Wave,” Dokl. Ross. Akad. Nauk 389(3), 328–331 (2003) [Dokl. Phys. (Engl. Transl.) 48 (3), 123–125 (2003)].zbMATHGoogle Scholar
  2. 2.
    N. A. Zlatin, S. M. Mochalov, G. S. Pugachev, and A. M. Bragov, “Temporal Features of Fracture inMetals under Pulsed Intense Actions,” Fiz. Tverd. Tela 16(6), 1752–1755 (1974) [Sov. Phys. Solid State (Engl. Transl.) 16, 1137–1140 (1974)].Google Scholar
  3. 3.
    N. A. Zlatin, N. N. Peschanskaya, and G. S. Pugachev, “On Brittle Solid Delay Fracture,” Zh. Tekhn. Fiz. 56(2), 403–406 (1986) [Tech. Phys. (Engl. Transl.)].Google Scholar
  4. 4.
    I. K. Krasyuk, P. P. Pashinin, A. Yu. Semenov, and V. E. Fortov, “Investigation of Thermophysical and Mechanical Properties of Matter under Extremal Conditions,” Kvant. Elektron. 33(7), 593–608 (2003) [Quantum Electron. (Engl. Transl.) 33 (7), 593–608 (2003)].CrossRefADSGoogle Scholar
  5. 5.
    K. Baumung, H. Bluhm, G. I. Kanel, et al., “Tensile Strength of Five Metals and Alloys in Nanosecond Load Duration Range at Normal and Elevated Temperatures,” Int. J. Impact Engng 25, 631–639 (2001).CrossRefGoogle Scholar
  6. 6.
    E. Moshe, S. Eliezer, Z. Henis, et al, “Experimental Measurements of the Strength of Metals Approaching the Theoretical Limit Predicted by the Equation of State,” Appl. Phys. Lett. 76(12), 1555–1557 (2000).CrossRefADSGoogle Scholar
  7. 7.
    A. P. Rybakov, “Spall in Non-One-Dimension ShockWaves,” Int. J. Impact Engng 24, 1041–1082 (2000).CrossRefGoogle Scholar
  8. 8.
    Yu. V. Petrov and P. A. Glebovskii, “Criterion of the Incubation Time in the Problems of Pulsed Fracture and Electric Breakdown,” Zh. Tekhn. Fiz. 74(11), 53–57 (2004) [Tech. Phys. (Engl. Transl.) 49 (11), 1447–1451 (2004)].Google Scholar
  9. 9.
    V. S. Nikiforovskii and E.I. Shemyakin, Dynamic Fracture of Solids (Nauka, Novosibirsk, 1979) [in Russian].Google Scholar
  10. 10.
    N. F. Morozov, Yu. V. Petrov, and A. A. Utkin, “On the Analysis of Spalling on the Basis of Structural Fracture Mechanics,” Dokl. Akad. Nauk SSSR 313(2), 276–279 (1990) [Sov. Phys. Dokl. (Engl. Transl.) 35, 646–649 (1990)].Google Scholar
  11. 11.
    A. A. Utkin, Fast Fracture of Brittle Media, Doctor in Mathematics and Physics Thesis (St. Petersburg Gos. Univ., St. Petersburg, 2007) [in Russian].Google Scholar
  12. 12.
    N. F. Morozov and Yu. V. Petrov, Dynamics of Fracture (Springer, Berlin, etc., 2000).zbMATHGoogle Scholar
  13. 13.
    N. F. Morozov, Yu. V. Petrov, and A. A. Utkin, “New Explanation of Some Effects of Brittle Fracture by Impact Loading,” in Advances in Fracture Research: Proc. of the 7th ICE, Vol. 6 (Pergamon Press, Oxford, 1989), pp. 3703–3711.Google Scholar
  14. 14.
    N. F. Morozov and Yu. V. Petrov, “New Principle of Testing of Dynamic Strength of Materials,” in MacroandMicromech. Aspects Fracture: Proc. EUROMECH-291, 22–27 June 1992, St. Petersburg (St. Petersburg, 1992), p. 25.Google Scholar
  15. 15.
    A. V. Kashtanov and Yu. V. Petrov, “Kinetic Description of Incubation Process under Dynamic Fracture,” Dokl. Ross. Akad. Nauk 414(2), 186–189 (2007) [Dokl. Phys. (Engl. Transl.) 52 (5), 270–273 (2007)].Google Scholar
  16. 16.
    V. N. Nikolaevskii, “Dynamical Strength and Rate of Fracture,” Mekh. Nov. Zarub. Nauke. Udar, Vzryv, Razrush., No. 26, 166–203 (1981).Google Scholar
  17. 17.
    R. Shok, “Rock Behavior under the Action of Large Stresses,” Mekh. Nov. Zarub. Nauke. Udar, Vzryv, Razrush., No. 26, 166–203 (1981).Google Scholar
  18. 18.
    Yu. V. Petrov, “Quantum” Macromechanics of Dynamic Fracture of Solids, Preprint No. 139 (IPMash RAN, Moscow, 1996) [in Russian].Google Scholar
  19. 19.
    I. S. Grigor’ev and E. Z. Meilikhov (Editors) Physical Quantities. Reference Book (Energoatomizdat, Moscow, 1991) [in Russian].Google Scholar

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  1. 1.St.-Petersburg State UniversityResearch Center of DynamicsPetergof, St. PetersburgRussia
  2. 2.Institute for Problems in Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations