Question-answering systems: Development and prospects

Article

Abstract

A number of problems that are involved in creating question-answering systems are discussed. A review is provided of the systems of this type that are most popular. The typical architecture of a question-answering system includes a question classification module. Different methods for creating this module are examined in the paper.

Keywords

question-answering systems DeepQA Watson question classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ELIZA. http://en.wikipedia.org/wiki/ELIZA. Accessed Mar. 07, 2012.
  2. 2.
    START. Natural Language Question Answering System. http://start.csail.mit.edu. Accessed Mar. 11, 2012.
  3. 3.
    Nikitin, A. and Raikov, P., Question-Answer Systems. http://yury.name/internet/06ia-seminar.ppt. Accessed Mar. 11, 2012.
  4. 4.
    Cycorp. http://www.cyc.com. Accessed Mar. 11, 2012.
  5. 5.
    Lapshin, V., Cyc System and Its Ontology Library. Ch. 1. Iskusstv. Intellekt Prinyatie Reshenii 2010, no. 2.Google Scholar
  6. 6.
    Lapshin, V., Cyc System and Its Ontology Library. Ch. 2. Iskusstv. Intellekt Prinyatie Reshenii 2010, no. 3.Google Scholar
  7. 7.
    OpenEphyra. http://sourceforge.net/projects/opene-phyra. Accessed Mar. 14, 2012.
  8. 8.
    Prager, J.M., Chu-Carroll, J., and Czuba, K., A Multi-Strategy, Multi-Question Approach to Question Answering Maybury, M., Ed., Menlo Park: AAAI, 2004.Google Scholar
  9. 9.
    Burger, J., Cardie, C., Chaudhri, V., et al., Issues, Tasks and Program Structures to Roadmap Research in Question and Answering (Q and A), 2000. http://www-nlpir.nist.gov/projects/duc/roadmapping.html
  10. 10.
    Text REtrival Confetence (TREC). http://trec.nist.gov. Accessed Mar. 07, 2012.
  11. 11.
    Question Answering Track. http://trec.nist.gov/data/qamain.html. Accessed Mar. 07, 2012.
  12. 12.
    IBM. http://www.ibm.com. Accessed Mar. 13, 2012.
  13. 13.
    Ferrucci, D.A., Brown, E.W., Chu-Carroll, J., et al., Building Watson: An Overview of the DeepQA Project, AI Magazine 2010, vol. 31, no. 3, pp. 59–79.Google Scholar
  14. 14.
    RDF.http://www.w3.org/RDF. Accessed Mar. 14, 2012.
  15. 15.
    Ferrucci, D.A. and Lally, A., UIMA: An Architectural Approach to Unstructured Information Processing in the Corporate Research Environment, Natural Language Eng. 2004, vol. 3–4, no. 10, pp. 327–348.CrossRefGoogle Scholar
  16. 16.
    Hadoop. http://hadoop.apache.org. Accessed Mar. 14, 2012.
  17. 17.
    Lapshin, V.A., Ontlogii v komp’yuternykh sistemakh (Ontologies in Computer Systems), Moscow: Nauchnyi Mir, 2010.Google Scholar
  18. 18.
    Lehnert, W., The Process of Question Answering: PhD Dissertation, Research Report, No. 88, 1977.Google Scholar
  19. 19.
    Graesser, A. and Person, N.K., Question Asking during Tutoring, Amer. Educ. Res. J. 1994, No. 31, pp. 104–137.Google Scholar
  20. 20.
    Graesser, A., Rus, V., and Cai, Z., Question Classification Schemes, Proc. 1st Workshop on Question Generation pp. 8–9, 2008. http://141.225.40.110/16-GraesserEtAl-QG08.pdf
  21. 21.
    Li, X. and Roth, D., Learning Question Classifiers, Proc. 19th Int. Conf. on Computational Linguistics, (COLING’02) Stroudsburg, Association for Computational Linguistics, 2002, vol. 1, pp. 1–7.CrossRefGoogle Scholar
  22. 22.
    Sundblad, H., Question Classification in Question Answering Systems, Ph. D. Thesis, Linkopings Univ., 2007.Google Scholar
  23. 23.
    WolframAlpha. http://www.wolframalpha.com. Accessed Mar. 11, 2012.
  24. 24.
    Strzalkowski, T. and Harabagiu, S., Advances in Open Domain Question Answering (Text, Speech and Language Technology) New York: Springer Verlag, 2006.Google Scholar

Copyright information

© Allerton Press, Inc. 2012

Authors and Affiliations

  1. 1.Department of Natural Language Query ProcessingABBYY Co.MoscowRussia

Personalised recommendations