Optimization methods in multi-criteria decision making analysis with interval information on the importance of criteria and values of scale gradations

  • A. P. Nelyubin
  • V. V. Podinovski


Accurate and efficient numerical methods for the solution of optimization problems that arise in the comparison of solution preferences with the methods of the theory of criteria importance in the case of interval estimates of degrees of superiority of certain criteria over others, as well as in the case of interval restrictions on the growth of preferences along the criteria range, are suggested.


multi-criteria decision making criteria importance theory uncertainty of coefficients of criteria importance and values of scale gradations interval estimates additive value function 


  1. 1.
    Larichev, O.I., Teoriya i metody prinyatiya reshenii (Theory and Methods of Decision Making), Moscow: Logos, 2006, 3rd ed.Google Scholar
  2. 2.
    Keeney, R.L. and Raiffa, H., Decision Making with Multiple Objectives Preferences and Value Tradeoffs, New York: Wiley, 1976.Google Scholar
  3. 3.
    Steuer, R., Multicriteria Optimization. Theory, Computation and Application, New York: Wiley, 1986.Google Scholar
  4. 4.
    Podinovski, V.V., Quantitative Importance of Criteria, Automation and Remote Control, 2000, no. 5, part 2, pp. 817–828.Google Scholar
  5. 5.
    Podinovski, V.V., The Quantitative Importance of Criteria for MCDA, JMCDA, 2002, vol. 11, pp. 1–15.MATHGoogle Scholar
  6. 6.
    Podinovski, V.V., On the Use of Importance Information in MCDA Problems with Criteria Measured on the First Ordered Metric Scale, JMCDA, 2009, vol. 15, pp. 163–174.Google Scholar
  7. 7.
    Podinovski, V.V., Vvedenie v teoriyu vazhnosti kriteriev v mnogokriterial’nykh zadachakh prinyatiya reshenii (Introduction into the Theory of Criteria Importance in Multi-Criteria Problems of Decision Making), Moscow: Fizmatlit, 2007.Google Scholar
  8. 8.
    Edwards, W. and Barron, F.H., SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility Measurement, Organization Behaviour and Human Processes, 1994, vol. 60, pp. 306–325.CrossRefGoogle Scholar
  9. 9.
    Podinovski, V.V., Interval Estimates of Criteria Importance in Multi-Criteria Optimization, ITMU, 2006, vol. 33, no.8, pp. 975–979.Google Scholar
  10. 10.
    Podinovski, V.V., Interval Estimates of Criteria Importance in Multi-Criteria Choice, SUIT, 2007, vol. 27, no. 1, pp. 22–26.MathSciNetGoogle Scholar
  11. 11.
    Podinovski, V.V., Interval Information on Criteria Importance in Multi-Criteria Decision Making Analysis, Nauchno-Tech. Inf., Ser. 2, 2007, vol. 6, pp. 15–18.Google Scholar
  12. 12.
    Nelyubin, A.P. and Podinovski, V.V., Bilinear Optimization in the Analysis of Multicriteria Problems using Criteria Importance Theory under Inexact Information about Preferences, Computational Mathematics and Mathematical Physics, 2011, vol. 5, no. 5, pp. 751–761.CrossRefGoogle Scholar
  13. 13.
    Podinovski, V.V., Decision under Multiple Estimates for the Importance Coefficients of Criteria and Probabilities of Values of Uncertain Factors in the Aim Function, Automation and Remote Control, 2004, vol. 65, no. 11, pp. 1817–1833.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Steuer, R.E., Multiple Objective Linear Programming with Interval Criteria Weighs, Management Science, 1986, vol. 23, pp. 305–316.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Carrizosa, E., Conde, E., Fernandez, F.R. and Puerto, J., Multicriteria Analysis with Partial Information about Weighting Coefficients, European Journal of Operational Research, 1995, vol. 82, pp. 291–301.CrossRefGoogle Scholar
  16. 16.
    Marmol, A.M., Puerto, J. and Fernandez, F.R., The Use of Partial Information on Weighs in Multicriteria Decision Problems, JMCDA, 1998, vol. 7, pp. 322-329.Google Scholar
  17. 17.
    Weber, M.A., A Method of Multiattribute Decision Making with Incomplete Information, Manage. Sci., 1985, vol. 31, pp. 1365–1371.MATHCrossRefGoogle Scholar
  18. 18.
    Belton, V. and Stewart, T.J., Multiple Criteria Decision Analysis. An Integrated Approach, Boston: Kluwer, 2003.Google Scholar
  19. 19.
    Krantz, D.H., Luce, R.D., Suppes, P. and Tverski, A., Foundation of Measurement, New York: Academic Press, 1971, vol. 1.Google Scholar
  20. 20.
    Podinovski, V.V. and Nelyubin, A.P., Multi-Criteria Decision Rules for Interval Information on Criteria Importance or their Ranges, Materialy 37-i Mezhdunarodnoi konferentsii “Informatsionnye tekhnologii v nauke, obrazovanii, telekommunikatsii i biznese” (Proc. 37th Int. Conference on Information Technologies in Science, Education, Telecommunication and Business), 2010, pp. 153–154.Google Scholar
  21. 21.
    Fishburn, P.C., Decision and Value Theory, New York: Wiley, 1964.MATHGoogle Scholar
  22. 22.
    Burbaki, N., Obshchaya topologiya. Topologicheskie gruppy. Chisla i svyazannye s nimi gruppy i prostranstva (General Topology. Topological groups. Numbers and groups and spaces connected with them), Moscow: Fizmatlit, 1969.Google Scholar
  23. 23.
    Podinovski, V.V. and Potapov, M.A., Theoretical Basics and Systems of Multi-Criteria Decision Making Support, Materialy 34-i Mezhdunarodnoi konferentsii “Informatsionnye tekhnologii v nauke, obrazovanii, telekommunikatsii i biznese” (Proc. 34th Int. Conf. on Information Technologies in Science, Education, Telecommunication and Business), 2007, pp. 87–89.Google Scholar
  24. 24.
    Podinovski, V.V., Analysis of Multicriteria Choice Problems by Methods of the Theory of Criteria Importance, Based on Computer Systems of Decision Making Support, Journal of Computer and System Sciences International, 2008, vol. 47, no. 2, pp. 221–225.MATHCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2011

Authors and Affiliations

  1. 1.Blagonravov Mechanical Engineering InstituteRussian Academy of SciencesBlagonravovRussia
  2. 2.National Research University “Higher School of Economics”MoscowRussia

Personalised recommendations