Advertisement

Applied Solar Energy

, Volume 55, Issue 1, pp 8–11 | Cite as

Study of Possible Ways of Improving the Morphology of Layers of the Solar Radiation Absorber in Perovskite-Based Cells

  • N. R. AshurovEmail author
  • N. Sh. Ashurov
  • J. T. Azimov
  • S. E. Maksimov
  • S. Sh. Rashidova
DIRECT CONVERSION OF SOLAR ENERGY INTO ELECTRICAL ENERGY
  • 30 Downloads

Abstract

The possible improvement of the morphology of the CH3NH3PbI3 perovskite layers by adding toluene in the process of obtaining absorber layers under different conditions is studied.

Keywords:

perovskite solar cells absorber morphology toluene 

Notes

FUNDING

This work was carried out as part of “Nanopolymeric Systems, Role of Kinetic Aspects and the Electron State in the Generation of Materials with Special Properties” Fundamental Project F7 for 2017–2020.

REFERENCES

  1. 1.
    Graetzel, M., Nat. Mater., 2014, vol. 13, pp. 838–842.CrossRefGoogle Scholar
  2. 2.
    Park, N.-G., Mater. Today, 2015, vol. 18, no. 2, pp. 65–72.CrossRefGoogle Scholar
  3. 3.
    Green, M.A., Ho-Baillie, A., and Snaith, H.J., Nat. Photon., 2014, vol. 8, pp. 506–514.CrossRefGoogle Scholar
  4. 4.
    Ashurov, N.R., Oksengendler, B.L., Rashidova, S.Sh., and Zakhidov, A.A., Appl. Sol. Energy, 2016, vol. 52, no. 1, pp. 5–15.CrossRefGoogle Scholar
  5. 5.
    Ashurov, N.R., Oksengendler, B.L., Maksimov, S.E., Rashidova, S.Sh., et al., Mod. Electron. Mater., 2017, vol. 3, no. 1, pp. 1–25.CrossRefGoogle Scholar
  6. 6.
    Ashurov, N.R., Oksengendler, B.L., Maksimov, S.E., et al., Uzb. Khim. Zh., 2017, spec. issue, pp. 125–157.Google Scholar
  7. 7.
    Salim, T., Sun, S., Abe, Y., et al., J. Mater. Chem. A, 2014, vol. 3, no. 17, pp. 8943–8969.CrossRefGoogle Scholar
  8. 8.
    Jeng, J.Y., Chiang, Y.F., Lee, M.H., et al., Adv. Mater., 2013, vol. 25, pp. 3727–3732.CrossRefGoogle Scholar
  9. 9.
    Xiao, Z., Bi, C., Shao, Y., et al., Energy Environ. Sci., 2014, vol. 7, pp. 2619–2623.CrossRefGoogle Scholar
  10. 10.
    Docampo, P., Ball, J.M., Darwich, M., et al., Nat. Commun., 2013, vol. 4, p. 2761.CrossRefGoogle Scholar
  11. 11.
    Nie, W.Y., Hsinhan, T., Aditya, D.M., et al., Science (Washington, DC, U. S.), 2015, vol. 347, pp. 522–525.CrossRefGoogle Scholar
  12. 12.
    Wu, C.-G., Chiang, C.-H., Tseng, Z.-L., et al., Energy Environ. Sci., 2015, vol. 8, pp. 2725–2733.CrossRefGoogle Scholar
  13. 13.
    Burschka, J., Pellet, N., Moon, S.J., et al., Nature (London, U.K.), 2013, vol. 499, pp. 316–319.CrossRefGoogle Scholar
  14. 14.
    Xiao, M., Huang, F., Huang, W., et al., Angew. Chem., Int. Ed. Engl., 2014, vol. 53, pp. 9898–9903.CrossRefGoogle Scholar
  15. 15.
    Kojima, A., Teshima, K., Shirai, Y., et al., J. Am. Chem. Soc., 2009, vol. 131, no. 17, pp. 6050–6051.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • N. R. Ashurov
    • 1
    Email author
  • N. Sh. Ashurov
    • 1
  • J. T. Azimov
    • 1
  • S. E. Maksimov
    • 1
  • S. Sh. Rashidova
    • 1
  1. 1.Institute of Polymer Chemistry and Physics, Academy of Sciences of the Republic of UzbekistanTashkentUzbekistan

Personalised recommendations