Applied Solar Energy

, Volume 54, Issue 6, pp 461–467 | Cite as

Analytical Performance Study of Fixed Speed Wind Turbine

  • Mohammed DebbacheEmail author
  • Semcheddine Derfouf
  • Abderrahmane Hamidat
  • Belhi Guerira
  • Housseyn Karoua


Fixed speed wind turbines have the advantage of being robust and reliable. They allow a direct connection to the electric. The purpose of the article is to study the aerodynamic behaviour and determine the performance of a fixed speed wind turbine. The work presents an analysis method based on the theory of blade element moments (BEM). The variation of aerodynamic parameters is studied for a wide range of wind speeds. A case study is conducted for the design of a wind turbine adapted to the Adrar site which is located in the Algerian Sahara. The results obtained showed that the wind turbine has maximum efficiency just at the design speed. For speeds higher than the design speed, the efficiency is reduced by the stall effect with decreases in torque due to the fall of the lift force. At wind speeds lower than the design value, the thrust effect increases, which puts the rotor under high mechanical stress and blade rotation decreases with low efficiency.


  1. 1.
    Zheng, M., Guo, L., Li, Y., et al., Power efficiency of 5-blade drag type vertical axis wind turbine, Appl. Sol. Energy, 2015, vol. 51, no. 3, pp. 225–231.CrossRefGoogle Scholar
  2. 2.
    Renewables 2017 Global Status Report, REN21, 2017, p. 82.Google Scholar
  3. 3.
    Manwell, J.F., McGowan, J.G., and Rogers, A.L., Wind Energy Explained: Theory, Design and Application, Chichester, UK: Wiley, 2009.CrossRefGoogle Scholar
  4. 4.
    Zheng, M., Li, Y., Teng, H., et al., Effect of blade number on performance of drag type vertical axis wind turbine, Appl. Sol. Energy, 2016, vol. 52, no. 4, pp. 315–320.CrossRefGoogle Scholar
  5. 5.
    Hansen, M.O.L., Aerodynamics of Wind Turbines, UK, USA: Earthscan, 2008.Google Scholar
  6. 6.
    Durand, W.F., Aerodynamic Theory, Berlin: Springer, 1936.CrossRefGoogle Scholar
  7. 7.
    Burton, T., Jenkins, N., Sharpe, D., and Bossanyi, E.A., Wind Energy Handbook, New York: Wiley, 2012.Google Scholar
  8. 8.
    Tang, X., Aerodynamic design and analysis of small horizontal axis wind turbine blades, PhD Thesis, UK: Univ. of Central Lancashire, 2012.Google Scholar
  9. 9.
    Buhl, M.L., Jr., A new empirical relationship between thrust coefficient and induction factor for the turbulent windmill state, Tech. Report, No. 500-36834, USA: NREL, 2005.CrossRefGoogle Scholar
  10. 10.
    Benchabane, F., Titaouine, A., Bennis, O., et al., An improved efficiency of fuzzy sliding mode control of permanent magnet synchronous motor for wind turbine generator pumping system, Appl. Sol. Energy, 2012, vol. 48, no. 2, pp. 112–117.CrossRefGoogle Scholar
  11. 11.
    Viterna, L.A. and Corrigan, R.D., Fixed pitch rotor performance of large horizontal axis wind turbines, in Proceedings of the DOE/NASA Workshop on Large Horizontal Axis Wind Turbines, Cleveland, Ohio, 1981.Google Scholar
  12. 12.
    Tangler, J. and Kocurek, J.D., Wind turbine post-stall airfoil performance characteristics guidelines for blade-element momentum methods, Tech. Report, No. 500-36900, USA: NREL, 2004.Google Scholar
  13. 13.
    Nedjari, H.D., Haddouche, S.K., Balehouane, A., and Guerri, O., Optimal windy sites in Algeria: potential and perspectives, Energy, 2018, vol. 147, pp. 1240–1255.CrossRefGoogle Scholar
  14. 14.
    Liu, X., Wang, L., and Tang, X., Optimized linearization of chord and twist angle profiles for fixed-pitch fixed-speed wind turbine blades, Renewable Energy, 2013, vol. 57, pp. 111–119.CrossRefGoogle Scholar
  15. 15.
    Karunakaran, C.S., Study of flow field over fabricated airfoil models of NACA 23015 with its kline-fogleman variant, Adv. Aerospace Sci. Appl., 2013, vol. 3, no. 2, pp. 95–100.Google Scholar
  16. 16.
    Boudia, S.M., “Optimisation de l'évaluation temporelle du gisement énergétique éolien par simulation numérique et contribution à la réactualisation de l’Atlas des vents en Algérie, PhD Thesis, Algeria: Univ. Tlemcen, 2013.Google Scholar
  17. 17.
    Hau, E., Wind Turbines, Fundamentals, Technologies, Application, Economics, Berlin, Heidelberg: Springer, 2006.Google Scholar
  18. 18.
    Boossanyi, E.A., Bladed 4.0 Theory Manual, Bristol: Garrad Hassan and Partners, 2003.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Mohammed Debbache
    • 1
    • 2
    Email author
  • Semcheddine Derfouf
    • 2
  • Abderrahmane Hamidat
    • 1
  • Belhi Guerira
    • 2
  • Housseyn Karoua
    • 1
  1. 1.Centre de Développement des Énergies Renouvelables, CDER, Route de l’ObservatoireBouzaréahAlgeria
  2. 2.Laboratoire de Génie Mécanique “LGM” Université de Biskra, BP: Université de BiskraBiskraAlgeria

Personalised recommendations