Applied Solar Energy

, Volume 54, Issue 6, pp 400–405 | Cite as

Managing Spatial Orientation of Photovoltaic Module to Obtain the Maximum of Electric Power Generation at Preset Point of Time

  • Yu. V. DausEmail author
  • V. V. Kharchenko
  • I. V. Yudaev


To evaluate the possibility of obtaining the maximum of electric power generation at a preset point of time by varying the spatial orientation of photovoltaic modules, its effect on the amount of utilized solar radiation was studied. The experiment was conducted by the example of Zernograd, Rostov oblast, Russia, with specially designed research equipment. The analysis of input of solar radiation to surfaces with different spatial orientation revealed that, owing to different combinations of spatial placement of the receiving site with respect to cardinal directions and the horizon line, it is possible to shift the maximum of power takeoff with photovoltaic modules relative to midday to the morning and evening time about by 4.5 h.


spatial orientation solar radiation intensity receiving surface of photovoltaic module 



  1. 1.
    Markvart, T. and Castaner, L., Practical Handbook of Photovoltaics: Fundamentals and Applications, New York: Elsevier, 2003.Google Scholar
  2. 2.
    Daus, Yu.V., Yudaev, I.V., and Stepanchuk, G.V., Appl. Sol. Energy, 2018, vol. 54, no. 2, pp. 137–141.Google Scholar
  3. 3.
    Avezova, N.R., Rakhimov, E.Yu., and Izzatillaev, J.O., Appl. Sol. Energy, 2018, vol. 54, no. 4, pp. 273–278.CrossRefGoogle Scholar
  4. 4.
    Rakhimov, E.Yu., Sadullaeva, Sh.E., Kolomiets, Yu.G., et al., Appl. Sol. Energy, 2017, vol. 53, no. 4, pp. 344–346.CrossRefGoogle Scholar
  5. 5.
    Głuchy, D., Kurz, D., and Trzmiel, G., Przeglad Elektrotech., 2013, no. 6, pp. 281–283.Google Scholar
  6. 6.
    Shchepetkov, N.I., Sbornik zadach po arkhitekturnoi svetologii. Chast’ vtoraya: Svet Solntsa v arkhitekture (Collection of Problems on Architectural Light. Part Two: The Light of the Sun in Architecture), Moscow: MARKhI, 2011.Google Scholar
  7. 7.
    Vissarionov, V.I., et al., Solnechnaya energetika: Uchebnoe posobie dlya vuzov (Solar Power, The School-Book), Moscow: MEI, 2008.Google Scholar
  8. 8.
    Corrada, P., Bell, J., Guan, L., and Motta, N., Energy Proc., 2014, no. 48, p. 806.Google Scholar
  9. 9.
    Patkó, I., Szeder, A., Patkó, C., Energy Proc., 2013, no. 32, p. 222.Google Scholar
  10. 10.
    Dzhamal', K., Denisova, A.E., and Doroshenko, A.V., Tr. Odess. Politekh. Univ., 2008, no. 1, pp. 133–138.Google Scholar
  11. 11.
    Artlet, L.E., Martines-Lozano, J.A., Utrillas, M.P., et al., Renewable Energy, 1999, no. 17, pp. 291–309.Google Scholar
  12. 12.
    Blackburn, J., Matching Utility Loads with Solar and Wind Power in North Carolina: Dealing with Intermittent Electricity Sources. NC-Wind-Solar.pdf. Accessed Sept. 1, 2016.Google Scholar
  13. 13.
    Darhmaoui, H. and Lahjouji, D., Energy Proc., 2013, no. 42, pp. 426–435.Google Scholar
  14. 14.
    Elhab, B.R. et al., Sci. Res. Essays, 2012, vol. 7, no. 42, pp. 3758–3765.Google Scholar
  15. 15.
    Rihab Mahjoub, E., Souissi, M., and Abdallah, H.H., Int. J. Mod. Nonlin. Theory Appl., 2014, no. 3, pp. 53–65.Google Scholar
  16. 16.
    Chandel, S.S. and Aggarwal, R.K., Smart Grid Renewable Energy, 2011, no. 2, p. 45.Google Scholar
  17. 17.
    Jamil, M.A. and Tiwari, G.N., Int. J. Energy Environ., 2010, vol. 1, no. 2, pp. 257–276.Google Scholar
  18. 18.
    Daus, Yu.V., Kharchenko, V.V., and Yudaev, I.V., Appl. Sol. Energy, 2016, vol. 52, no. 2, pp. 124–129.CrossRefGoogle Scholar
  19. 19.
    Daus, Yu.V. and Kharchenko, V.V., Appl. Sol. Energy, 2018, vol. 54, no. 1, pp. 71–76.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Yu. V. Daus
    • 1
    Email author
  • V. V. Kharchenko
    • 2
  • I. V. Yudaev
    • 1
  1. 1.Azov-Black Sea Engineering Institute, Don State Agrarian UniversityZernogradRussia
  2. 2.Federal Scientific Agroengineering Center VIMMoscowRussia

Personalised recommendations