Applied Solar Energy

, Volume 54, Issue 6, pp 448–455 | Cite as

Estimation of Monthly Average Daily Global Solar Radiation Using Meteorological-Based Models in Adrar, Algeria

  • Kada Bouchouicha
  • Nadjem BailekEmail author
  • Mohamed El-Shimy Mahmoud
  • Javier Almorox Alonso
  • Abdeldjalil Slimani
  • Abdallah Djaafari


This paper presents a systematic approach to empirical model selection for the global solar radiation (GSR) estimation considering the Algerian town of Adrar. The approach is based on various meteorological variables. The accuracy of the selected model is validated using GSR measurements in the considered location (i.e. Adrar) through eight statistical indicators. Long-term six-parameter data measurements are collected. The collected measurements are divided into two subsets; the first subset (from year 2009 to 2013) is used for the modeling purpose, while the second subset (years 2014–2016) is used for the model evaluation purpose. The results show that the statistical performance of the traditional Angström formula for GSR estimation can be significantly improved by including the effect of the maximum and minimum temperatures in the GSR empirical models. In addition, the results show that excluding the cloud cover from the empirical models significantly reduces the statistical performance of these models.


global solar radiation meteorological parameters model estimation statistical analysis 


  1. 1.
    Sunbelt countries could have 1.1 TW solar PV by 2030, Renewable Energy Focus, 2010. Scholar
  2. 2.
    Bailek N., Bouchouicha K., El-Shimy M., and Slimani A., Updated status of Renewable and Sustainable Energy Projects in Algeria, in Economics of Variable Renewable Sources for Electric Power Production, El-Shimy, M., Ed., Saarbrücken: Lambert Academic, Omniscriptum, 2017, pp. 519–528.Google Scholar
  3. 3.
    Messai, A., Benkedda, Y., Bouaichaoui, S., and Benzerga, M., Feasibility study of parabolic trough solar power plant under Algerian climate, Energy Proc., 2013, vol. 42, pp. 73–82.CrossRefGoogle Scholar
  4. 4.
    Prescott, J., Evaporation from a water surface in relation to solar radiation, Trans. R. Soc. South Austral., 1940, vol. 64, pp. 114–118.Google Scholar
  5. 5.
    Abdo, T. and El-Shimy, M., Estimating the global solar radiation for solar energy projects-Egypt case study, Int. J. Sustainable Energy, 2013, vol. 32, pp. 682–712.CrossRefGoogle Scholar
  6. 6.
    Almorox, J., Benito, M., and Hontoria, C., Estimation of monthly Angström-Prescott equation coefficients from measured daily data in Toledo, Spain, Renewable Energy, 2005, vol. 30, pp. 931–936.CrossRefGoogle Scholar
  7. 7.
    Bakirci, K., Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey, Energy, 2009, vol. 34, pp. 485–501.CrossRefGoogle Scholar
  8. 8.
    Namrata, K., Sharma, S., and Seksena, S., Empirical models for the estimation of global solar radiation with sunshine hours on horizontal surface for Jharkhand (India), Appl. Sol. Energy, 2016, vol. 52, pp. 164–172.CrossRefGoogle Scholar
  9. 9.
    Duzen, H. and Aydin, H., Sunshine-based estimation of global solar radiation on horizontal surface at Lake Van region (Turkey), Energy Convers. Manage., 2012, vol. 58, pp. 35–46.CrossRefGoogle Scholar
  10. 10.
    Khalil, S.A. and Shaffie, A., A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt, Renewable Sustainable Energy Rev., 2013, vol. 27, pp. 853–863.CrossRefGoogle Scholar
  11. 11.
    Almorox, J., Bocco, M., and Willington, E., Estimation of daily global solar radiation from measured temperatures at Cañada de Luque, Córdoba, Argentina, Renewable Energy, 2013, vol. 60, pp. 382–387.CrossRefGoogle Scholar
  12. 12.
    Boukelia, T.E., Mecibah, M.-S., and Meriche, I.E., General models for estimation of the monthly mean daily diffuse solar radiation (case study: Algeria), Energy Convers. Manage., 2014, vol. 81, pp. 211–219.CrossRefGoogle Scholar
  13. 13.
    Chegaar, M. and Chibani, A., Global solar radiation estimation in Algeria, Energy Convers. Manage., 2001, vol. 42, pp. 967–973.CrossRefGoogle Scholar
  14. 14.
    Nia, M., Chegaar, M., Benatallah, M., and Aillerie, M., Contribution to the quantification of solar radiation in Algeria, Energy Proc., 2013, vol. 36, pp. 730–737.CrossRefGoogle Scholar
  15. 15.
    Salmi, M., Chegaar, M., and Mialhe, P., A collection of models for the estimation of global solar radiation in Algeria, Energy Sources, Part B, 2011, vol. 6, pp. 187–191.Google Scholar
  16. 16.
    Aoun, N. and Bouchouicha, K., Simple correlation models for estimation of horizontal global solar radiation for Oran, Northwest Algeria, Int. J. Eng. Res. Africa, 2017, vol. 32.Google Scholar
  17. 17.
    Angstrom, A., Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation, Quart. J. R. Meteorol. Soc., 1924, vol. 50, pp. 121–126.CrossRefGoogle Scholar
  18. 18.
    Ahmad, M.J. and Tiwari, G., Solar radiation models – a review, Int. J. Energy Res., 2011, vol. 35, pp. 271–290.CrossRefGoogle Scholar
  19. 19.
    Spencer, J., Fourier series representation of the position of the sun, Search, 1971, vol. 2, pp. 172–172.Google Scholar
  20. 20.
    Bailek, N., Bouchouicha, K., Al-Mostafa, Z., et al., A new empirical model for forecasting the diffuse solar radiation over Sahara in the Algerian Big South, Renewable Energy, 2018, vol. 117, pp. 530–537.CrossRefGoogle Scholar
  21. 21.
    Besharat, F., Dehghan, A.A., and Faghih, A.R., Empirical models for estimating global solar radiation: a review and case study, Renewable Sustainable Energy Rev., 2013, vol. 21, pp. 798–821.CrossRefGoogle Scholar
  22. 22.
    Rietveld, M., A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine, Agricult. Meteorol., 1978, vol. 19, pp. 243–252.CrossRefGoogle Scholar
  23. 23.
    Zabara, K., Estimation of global solar radiation in Greece, Solar Wind Technol., 1986, vol. 3, pp. 267–272.CrossRefGoogle Scholar
  24. 24.
    Almorox, J. and Hontoria, C., Global solar radiation estimation using sunshine duration in Spain, Energy Convers. Manage., 2004, vol. 45, pp. 1529–1535.CrossRefGoogle Scholar
  25. 25.
    Newland, F., A study of solar radiation models for the coastal region of South China, Solar Energy, 1989, vol. 43, pp. 227–235.CrossRefGoogle Scholar
  26. 26.
    Chen, R., Ersi, K., Yang, J., et al., Validation of five global radiation models with measured daily data in China, Energy Convers. Manage., 2004, vol. 45, pp. 1759–1769.CrossRefGoogle Scholar
  27. 27.
    Mubiru, J., Banda, E., D’Ujanga, F., and Senyonga, T., Assessing the performance of global solar radiation empirical formulations in Kampala, Uganda, Theor. Appl. Climatol., 2007, vol. 87, pp. 179–184.CrossRefGoogle Scholar
  28. 28.
    Adaramola, M.S., Estimating global solar radiation using common meteorological data in Akure, Nigeria, Renewable Energy, 2012, vol. 47, pp. 38–44.CrossRefGoogle Scholar
  29. 29.
    Badescu, V., Correlations to estimate monthly mean daily solar global irradiation: application to Romania, Energy, 1999, vol. 24, pp. 883–893.CrossRefGoogle Scholar
  30. 30.
    El-Sebaii, A., Al-Ghamdi, A., Al-Hazmi, F., and Faidah, A.S., Estimation of global solar radiation on horizontal surfaces in Jeddah, Saudi Arabia, Energy Policy, 2009, vol. 37, pp. 3645–3649.CrossRefGoogle Scholar
  31. 31.
    Swartman, R. and Ogunlade, O., Solar radiation estimates from common parameters, Solar Energy, 1967, vol. 11, pp. 170–172.CrossRefGoogle Scholar
  32. 32.
    Abdalla, Y.A., New correlations of global solar radiation with meteorological parameters for Bahrain, Int. J. Solar Energy, 1994, vol. 16, pp. 111–120.CrossRefGoogle Scholar
  33. 33.
    Namrata, K., Sharma, S., and Seksena, S., Comparison of different models for estimation of diffuse solar radiation in Jharkhand (India) region, Appl. Solar Energy, 2015, vol. 51, pp. 219–224.CrossRefGoogle Scholar
  34. 34.
    Bailek, N., Bouchouicha, K., Mohamed, E.-S., et al., Improved mathematical modeling of the hourly solar diffuse fraction (HSDF)-Adrar, Algeria Case Study, Int. J. Math. Anal. Appl., 2017, vol. 4, pp. 8–12.Google Scholar
  35. 35.
    Despotovic, M., Nedic, V., Despotovic, D., and Cvetanovic, S., Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation, Renewable Sustainable Energy Rev., 2016, vol. 56, pp. 246–260.CrossRefGoogle Scholar
  36. 36.
    Bouchouicha, K., Aoun, N., Bailek, N., and Razagui, A., Solar resource potentials in Algeria, in Economics of Variable Renewable Sources for Electric Power Production, El-Shimy, M., Ed., Germany: Lap Lambert Academic, Omniscriptum, 2017.Google Scholar
  37. 37.
    Jarraud, M., Guide to Meteorological Instruments and Methods of Observation (WMO-No. 8), Geneva, Switzerland: World Meteorological Organisation, 2008.Google Scholar
  38. 38.
    Bailek N., Bouchouicha K., Abdel-Hadi Y., et al., Distribution of Global Solar Radiation on a horizontal surface located in Southwest region of Algeria, in Proceedings of the Arab Conference on Astronomy and Geophysics, 6th Assembly, 2018.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Kada Bouchouicha
    • 1
  • Nadjem Bailek
    • 2
    Email author
  • Mohamed El-Shimy Mahmoud
    • 3
  • Javier Almorox Alonso
    • 4
  • Abdeldjalil Slimani
    • 1
  • Abdallah Djaafari
    • 2
  1. 1.Unité de Recherche en Energies Renouvelables en Milieu Saharien (URERMS), Centre de Développement des Energies Renouvelables (CDER)AdrarAlgeria
  2. 2.Sciences and Environment Research Laboratory, Department of Matter sciences, Faculty of Sciences and Technology, University of Center TamanghassetTamanghassetAlgeria
  3. 3.Electric Power and Machines Department, Faculty of Engineering, Ain Shams UniversityCairoEgypt
  4. 4.Departamento de Produccion Agraria ETSI Agronomos, Universidad Politecnica de Madrid UPMMadridSpain

Personalised recommendations