Skip to main content
Log in

Recent advances in the neurobiology of attachment behavior

  • Communication
  • Published:
Translational Neuroscience

Abstract

In a biological sense an individual’s life is all about survival and reproduction. Beside the selection of a mate, the mutual commitment of a parent to sustain an infant through a period of dependency is amongst the most important aspects of natural selection. Here we review how the highly conserved circuitry of key midbrain and hypothalamic structures, and limbic and frontal cortical regions support these processes, and at the same time are involved in shaping the offspring’s emotional development and behavior. Many recent studies provided new findings on how attachment behavior and parental bonding is promoted and maintained through genetic and epigenetic influences on synaptic plasticity of mirror neurons and various neuropeptide systems, particularly oxytocinergic, and how these systems serve to link social cues to the brain reward system. Most of this evidence suggests that stress, early parental deprivation and lack of care during the postnatal period leads to profound and lasting changes in the attachment pattern and motivational development with consequent increased vulnerability of the mesocortical and mesolimbic dopamine-associated reward reinforcement pathways to psychosocial stressors, abuse of stimulants and psychopathology later in life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sameroff A., A unified theory of development: a dialectic integration of nature and nurture, Child Dev., 2010, 81, 6–22

    Article  PubMed  Google Scholar 

  2. Adolphs R., Cognitive neuroscience of human social behavior, Nature Neurosci., 2003, 4, 165–178

    CAS  Google Scholar 

  3. Fagiolini M., Jensen C.L., Champagne F.A., Epigenetic influences on brain development and plasticity, Curr. Opin. Neurobiol., 2009, 19, 207–212

    Article  PubMed  CAS  Google Scholar 

  4. Rutter M., Clinical implications of attachment concepts: retrospect and prospect, J. Child Psychol. Psychiatr., 1995, 36, 549–571

    CAS  Google Scholar 

  5. Cassidy J., The nature of child’s ties, In: Handbook of attachment: theory, research and clinical applications (eds. Cassidy J, Shaver PR), New York: Guilford Press, 1999, 3–20

    Google Scholar 

  6. Bowlby J., The nature of the child’s tie to his mother, Int. J. Psychoanal., 1958, 39, 350–373

    PubMed  CAS  Google Scholar 

  7. Ainsworth M. D., Blehar M., Waters E., Wall S., Patterns of attachment: a psychological study of the Strange Situation, Hillsdale NJ: Lawrence Erlbaum Associates, 1978

    Google Scholar 

  8. Weinfield N. S., Sroufe L.A., Egeland B., Carlson E., Individual differences in infant-caregiver attachment, In: Handbook of attachment: theory, research and clinical applications (eds. Cassidy J, Shaver PR), New York and London: Guilford Press, 2008, 78–101

    Google Scholar 

  9. Main M., Solomon J., Discovery of an insecure disoriented attachment pattern: procedures, findings and implications for the classification of behavior, In: Affective development in infancy (eds. Brazelton T, Youngman M), Norwood, NJ: Ablex, 1986

    Google Scholar 

  10. Prior V., Glaser D., Understanding attachment and attachment disorders: theory, evidence, and practice, Jessica Kingsley Publishers: London and Philadelphia, 2006

    Google Scholar 

  11. Karen R., Becoming attached: first relationships and how they shape our capacity to love, New York: Oxford University Press, 1994

    Google Scholar 

  12. Marvin R. S., Britner P.A., Normative development: the ontogeny of attachment, In: Handbook of attachment: theory, research and clinical applications (eds. Cassidy J, Shaver PR), New York and London: Guilford Press, 2008, 269–294

    Google Scholar 

  13. Kobak R., Madsen S., Disruption in attachment bonds, In: Handbook of attachment: theory, research and clinical applications (eds. Cassidy J, Shaver PR), New York and London: Guilford Press, 2008, 23–47

    Google Scholar 

  14. Fraley R. C., Shaver P.R., Adult romantic attachment: theoretical developments, emerging controversies, and unanswered questions, Rev. Gen. Psychol., 2000, 4, 132–154

    Article  Google Scholar 

  15. Rholes W. S., Simpson J.A., Attachment theory: basic concepts and contemporary questions, In: Adult attachment: theory, research, and clinical implications (Rholes WS, Simpson JA, eds), New York: Guilford Press, 2004, 3–14

    Google Scholar 

  16. Main M., Kaplan N., Cassidy J., Security in infancy, childhood and adulthood: a move to the level of representation, In: Growing points of attachment theory and research (Bretherton I, Waters E, eds), Chicago: University of Chicago Press, 1985

    Google Scholar 

  17. Steele H., Steele M., Fonagy P., Associations among attachment classifications of mothers, fathers, and their infants, Child Dev., 1996, 67, 541–555

    Article  PubMed  CAS  Google Scholar 

  18. Wise R. A., Bozarth M.A., Brain reward circuitry: four circuit elements „wired” in apparent series, Brain Res. Bull., 1984, 12, 203–208

    Article  PubMed  CAS  Google Scholar 

  19. Arrias-Carrión O., Pŏppel E., Dopamine, learning, and reward-seeking behavior, Acta Neurobiol. Exp., 2007, 67, 481–488

    Google Scholar 

  20. Burgdorf J., Panksepp J., The neurobiology of positive emotions, Neurosci. Biobehav. Rev. 2006, 30, 173–187

    Article  PubMed  Google Scholar 

  21. Olds J., Milner P., Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain, J. Comp. Physiol. Psychol., 1954, 47, 419–427

    Article  PubMed  CAS  Google Scholar 

  22. Olds M. E., Olds J., Emotional and associative mechanisms in the rat brain, J. Comp. Physiol. Psychol., 1961, 54,120–26

    Article  Google Scholar 

  23. Moan C. E., Heath R.G., Septal stimulation for the initiation of heterosexual activity in a homosexual male, J. Behav. Ther. Exp. Psychiatr., 1972, 3, 23–30

    Article  Google Scholar 

  24. Gardner E. L., Lowinson J.H., Drug craving and positive/negative hedonic brain substrates activated by addicting drugs, Sem. Neurosci., 1993, 5, 359–368

    Article  CAS  Google Scholar 

  25. Giros B., Jaber M., Jones S.R., Wightman R.M., Caron M.G., Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter, Nature, 379, 606–612

  26. Wise R. A., Dopamine, learning and motivation, Nat. Rev. Neurosci., 2004, 5, 483–494

    Article  PubMed  CAS  Google Scholar 

  27. Lisman J. E., Grace A.A., The hippocampal-VTA loop: controlling the entry of information into long-term memory, Neuron, 2005, 46, 703–713

    Article  PubMed  CAS  Google Scholar 

  28. Pierce R.C., Kumaresan V., The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse?, Neurosci. Biobehav. Rev. 2006, 30, 215–238

    Article  PubMed  CAS  Google Scholar 

  29. Rothman R. B., Baumann M.H., Balance between dopamine and serotonin release modulates behavioral effects of amphetaminetype drugs, Ann. N.Y. Acad. Sci., 2006, 1074, 245–260

    Article  PubMed  CAS  Google Scholar 

  30. Kahlig K. M., Binda F., Khoshbouei H., Amphetamine induces dopamine efflux through a dopamine transporter channel, Proc. Natl. Acad. Sci. USA, 2005, 102, 3495–3500

    Article  PubMed  CAS  Google Scholar 

  31. Gonzales R. A., Job M.O., Doyon W.M., The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement, Pharmacol. Ther., 2004, 103, 121–146

    Article  PubMed  CAS  Google Scholar 

  32. Gardner E. L., Endocannabinoid signaling system and brain reward: emphasis on dopamine, Pharmacol. Biochem. Behav., 2005, 81, 263–284

    Article  PubMed  CAS  Google Scholar 

  33. Schultz W., Dayan P., Montague P.R., A neural substrate of prediction and reward, Science, 1997, 275, 1593–1599

    Article  PubMed  CAS  Google Scholar 

  34. Schultz W., Behavioral theories and the neurophysiology of reward, Annu. Rev. Psychol. 2006, 57, 87–115

    Article  PubMed  Google Scholar 

  35. Bromm B., Brain images of pain, News Physiol. Sci., 2001, 16, 244–249

    PubMed  CAS  Google Scholar 

  36. Kringelbach M. L., Rolls E.T., The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology, Prog. Neurobiol., 2004, 72, 341–372

    Article  PubMed  Google Scholar 

  37. Hof P. R., Mufson E.J., Morrison J.H., Human orbitofrontal cortex: cytoarchitecture and quantitative immunohistochemical parcellation, J. Comp. Neurol., 1995, 359, 48–68

    Article  PubMed  CAS  Google Scholar 

  38. Kringelbach M. L., The human orbitofrontal cortex: linking reward to hedonic experience, Nat. Rev. Neurosci., 2005, 6, 691–702

    Article  PubMed  CAS  Google Scholar 

  39. Gogtay N., Giedd J.N., Lusk L., Hayashi K.M., Greenstein D., Vaituzis A.C., et al., Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl. Acad. Sci. USA, 2004, 101, 8174–8179

    Article  PubMed  CAS  Google Scholar 

  40. Brake W. G., Zhang T.Y., Diorio J., Meaney M.J., Gratton A., Influence of early postnatal rearing conditions on mesocorticolimbic dopamine and behavioral responses to psychostimulants and stressors in adult rats, Eur. J. Neurosci., 2004, 19, 1863–1874

    Article  PubMed  Google Scholar 

  41. Anderson M. C., Ochsner K.N., Kuhl B., Cooper J., Robertson E., Gabrieli S.W. et al., Neural systems undelying the suppression of unwanted memories, Science, 2004, 303, 232–235

    Article  PubMed  CAS  Google Scholar 

  42. Bauer H., Pripfl J., Lamm C., Prainsack C., Taylor N., Functional neuroanatomy of learned helplessness, Neuroimage, 2003, 20, 927–939

    Article  PubMed  Google Scholar 

  43. Siegal M., Varley R., Neural systems involved in ‘theory of mind’, Nat. Rev. Neurosci. 2002, 3, 463–471

    PubMed  CAS  Google Scholar 

  44. Di Pellegrino G., Fadiga L., Fogassi L., Gallese V., Rizzolatti G., Understanding motor events: a neurophysiological study, Exp. Brain Res., 1992, 91, 176–180

    Article  PubMed  Google Scholar 

  45. Rizzolatti G., Fabbri-Destro M., Mirror neurons: from discovery to autism, Exp. Brain Res., 2010, 200, 223–237

    Article  PubMed  Google Scholar 

  46. Rizzolatti G., Craighero L., The mirror-neuron system, Annu. Rev. Neurosci., 2004, 27, 169–179

    Article  PubMed  CAS  Google Scholar 

  47. Fabbri-Destro M., Rizzolatti G., The mirror system in monkeys and humans, Physiology, 2008, 23, 171–179

    Article  PubMed  Google Scholar 

  48. Iacoboni M., Imitation, empathy, and mirror neurons, Annu. Rev. Psychol., 2009, 60, 653–670

    Article  PubMed  Google Scholar 

  49. Rizzolatti G., Arbib M.A., Language within our grasp, Trends Neurosci., 1998, 21, 188–194

    Article  PubMed  CAS  Google Scholar 

  50. Fadiga L., Craighero L., Buccino G., Rizzolatti G., Speech listening specifically modulates the excitability of tongue muscles: s TMS study, Eur. J. Neurosci., 2002, 15, 399–402

    Article  PubMed  Google Scholar 

  51. Watkins K. E., Strafella A.P., Paus T., Seeing and hearing speech excites the motor system involved in speech production, Neuropsychologia, 2003, 41, 989–994

    Article  PubMed  CAS  Google Scholar 

  52. Wilson S. M., Saygin A.P., Sereno M.I., Iacoboni M., Listening to speech activates motor areas involved in speech production, Nat. Neurosci., 2004, 7, 701–702

    Article  PubMed  CAS  Google Scholar 

  53. Carr L., Iacoboni M., Dubeau M.C., Mazziotta J.C., Lenzi G.L., Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas, Proc. Natl. Acad. Sci. USA, 2003, 100, 5497–5502

    Article  PubMed  CAS  Google Scholar 

  54. Lenzi D., Trentini C., Pantano P., Macaluso E., Iacoboni M., Lenzi G.I., et al., Neural basis of maternal communication and emotional expression processing during infant preverbal stage, Cereb. Cortex, 2009, 19, 1124–1133

    Article  PubMed  CAS  Google Scholar 

  55. Williams J. H.G., Whiten A., Suddendorf T., Perrett D.I., Imitation, mirror neurons, and autism, Neurosci. Biobehav. Rev., 2001, 25, 287–295

    Article  PubMed  CAS  Google Scholar 

  56. Iacoboni M., Dapretto M., The mirror neurons system and the consequences of its dysfunction, Nat. Rev. Neurosci., 2006, 7, 942–951

    Article  PubMed  CAS  Google Scholar 

  57. Rizzolatti G., Fabbri-Destro M., Cattaneo L., Mirror neurons and their clinical relevance, Nat. Clin. Pract. Neurol., 2009, 5, 24–34

    Article  PubMed  Google Scholar 

  58. Dapretto M., Davies M.S., Pfeifer J.H., Scott A.A., Sigman M., Bookheimer S.Y. et al., Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorder, Nat. Neurosci., 2006, 9, 28–30

    Article  PubMed  CAS  Google Scholar 

  59. Darwin C. R., The expression of emotions in man and animals, London: John Murray, 1872

    Book  Google Scholar 

  60. Plutchik R., Outlines of a new theory of emotion, Trans. NY Acad. Sci., 1958, 20, 394–403

    CAS  Google Scholar 

  61. Russell P. A., A circumplex model of affect, J. Pers. Soc. Psychol., 1971, 39, 1161–1178

    Google Scholar 

  62. Kolb B., Whishaw I.Q. (eds.), Fundamentals of human neuropsychology, 6th edition, Worth Publishers, 2008

  63. Ekman P., Friesen W.V., Constants across culture in the face and emotion, J. Pers. Soc. Psychol., 1971, 17, 124–129

    Article  PubMed  CAS  Google Scholar 

  64. Shaffer D. R., Social and personality development, 6th edition, Belmont, CA: Wadsworth, 2009

    Google Scholar 

  65. Oster H., Emotion in the infant’s face: insights from the study of infants with facial anomalies, Ann. NY Acad. Sci., 2003, 1000, 197–204

    Article  PubMed  Google Scholar 

  66. Feldman R., Weller A., Zagoory-Sharon O., Levine A., Evidence for a neuroendocrinological foundation of human affiliation: plasma oxytocin levels across pregnancy and the postpartum period predict mother-infant bonding, Psychol. Sci., 2007, 18, 965–970

    Article  PubMed  Google Scholar 

  67. Baumgartner T., Heinrichs M., Vonlanthen A., Fischbacher U., Fehr E, Oxytocin shapes the neural circuitry of trust and trust adaptation in humans, Neuron, 2008, 58, 639–650

    Article  PubMed  CAS  Google Scholar 

  68. Guastella A. J., Mitchell P.B., Dadds M.R., Oxytocin increases gaze to the eye region of human faces, Biol. Psychiatry, 2008, 63, 3–5

    Article  PubMed  CAS  Google Scholar 

  69. Olazábal D. E., Young L.J., Oxytocin receptors in the nucleus accumbens facilitate „spontaneous“ maternal behavior in adult female prarie voles, Neuroscience, 2006, 141, 559–568

    Article  PubMed  CAS  Google Scholar 

  70. Strathearn L., Fonagy P., Amico J., Montague P.R., Adult attachment predicts maternal brain and oxytocin response to infant cues, Neuropsychopharmacology, 2009, 34, 2655–2666

    Article  PubMed  CAS  Google Scholar 

  71. Bales K. L., van Westerhuyzen J.A., Lewis-Reese A.D., Grotte N.D., Lanter J.A., Carter C.S., Oxytocin has dose-dependent developmental effects on pair-bonding and alloparental care in female prairie voles, Horm. Behav., 2007, 52, 274–279

    Article  PubMed  CAS  Google Scholar 

  72. Ahern T.H., Young L.J., The impact of early life family structure on adult social attachment, alloparental behavior, and the neuropeptide systems regulating affiliative behaviors in the monogamous prairie vole (Microtus ochrogaster), Front. Behav. Neurosci., 2009, 3, 1–19

    Article  CAS  Google Scholar 

  73. Modahl C., Green L., Fein D., Morris M., Waterhouse L., Feinstein C., et al., Plasma oxytocin levels in autistic children, Biol. Psychiatry, 1998, 43, 270–277

    Article  PubMed  CAS  Google Scholar 

  74. Hollander E., Bartz J., Chaplin W., Phillips A., Sumner J., Soorya L., et al., Oxytocin increases retention of social cognition in autism, Biol. Psychiatry, 2007, 61, 498–503

    Article  PubMed  CAS  Google Scholar 

  75. Fries A. B., Ziegler T.E., Kurian J.R., Jacoris S., Pollak S.D., Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior, Proc. Natl. Acad. Sci. USA, 2005, 102, 17237–17240

    Article  PubMed  CAS  Google Scholar 

  76. Chugani H. T., Behen M.E., Muzik O., Juhász C., Nagy F., Chugani D.C., Local brain functional activity following early deprivations: a study of post-institutionalized Romanian orphans, Neuroimage, 2001, 14, 1290–1301

    Article  PubMed  CAS  Google Scholar 

  77. Heim C., Young L.J., Newport D.J., Mletzko T., Miller A.H., Nemeroff C.B., Lower CSF oxytocin concentrations in women with a history of childhood abuse, Mol. Psychiatry, 2009, 14, 954–958

    Article  PubMed  CAS  Google Scholar 

  78. Gordon I., Zagoory-Sharon O., Leckman J.F., Feldman R., Prolactin, oxytocin, and the development of paternal behavior across the first six months of fatherhood, Horm. Behav., 2010, Epub ahead of print

  79. Nagasawa M, Kikusui T, Onaka T, Ohta M, Dog’s gaze at its owner increases owner’s urinary oxytocin during social interaction, Horm. Behav., 2009, 55, 434–441

    Article  PubMed  CAS  Google Scholar 

  80. Neumann I. D., The advantage of social living: brain neuropeptides mediate the beneficial consequences of sex and motherhood, Front. Bioendocrinol., 2009, 30, 483–496

    Article  CAS  Google Scholar 

  81. Leckman J. F., Herman A.E., Maternal behavior and developmental psychopathology, Biol. Psychiatry, 2002, 51, 27–43

    Article  PubMed  Google Scholar 

  82. Gammie S. C., Bethea E.D., Stevenson S.A., Altered maternal profiles in corticotropin-releasing factor receptor 1 deficient mice, BMC Neurosci, 2007, 8, 17 doi:10. 1186/1471-2202-8-17

    Article  PubMed  CAS  Google Scholar 

  83. Gammie S. C., Seasholtz A.F., Stevenson S.A., Deletion of corticotropinreleasing factor binding protein selectively impairs maternal, but not intermale aggression, Neuroscience, 2008, 157, 502–512

    Article  PubMed  CAS  Google Scholar 

  84. Hansen N. S., Gammie S.C., Trpc 2 gene impacts on maternal aggression, accessory olfactory bulb anatomy and brain activity, Gene Brain Behav, 2009, 8, 639–649

    Article  CAS  Google Scholar 

  85. Caspi A., McClay J., Moffitt T.E., Mill J., Martin J., Craig I.W., et al., Role of genotype in the cycle of violence in maltreated children, Science, 2002, 297, 851–854

    Article  PubMed  CAS  Google Scholar 

  86. Nelson R. J., Trainor B.C., Neural mechanisms of aggression, Nat. Rev. Neurosci., 2007, 8, 536–546

    Article  PubMed  CAS  Google Scholar 

  87. Pedersen C. A., Biological aspects of social bonding and the roots of human violence, Ann NY Acad SCI, 2004, 1036, 106–127

    Article  PubMed  Google Scholar 

  88. Anderson S. W., Bechara A., Damasio H., Tranel D., Damasio A.R., Impairment of social and moral behavior related to early damage in human prefrontal cortex, Nat. Neurosci., 1999, 2, 1032–1037

    Article  PubMed  CAS  Google Scholar 

  89. Raine A., Lencz T., Bihrle S., LaCasse L., Coilletti P., Reduced prefrontal grey matter volume and reduced autonomic activity in antisocial personality disorder. Arch. Gen. Psychiatry 2000, 57, 119–127

    Article  PubMed  CAS  Google Scholar 

  90. Kiehl K. A., Smith A.M., Hare R.D., Mendrek A, Forster B.B., Brink J., et al., Limbic abnormalities in affective processing by criminal psychopats as revealed by functional magnetic resonance imaging, Biol Psychiatry 2001, 50, 677–684

    Article  PubMed  CAS  Google Scholar 

  91. Le Doux J. E., Emotion circuits in the brain, Annu. Rev. Neurosci., 2000, 24, 155–184

    Article  Google Scholar 

  92. Mueller B. R., Bale T.L., Sex-specific programming of offspring emotionality after stress early in pregnancy, J. Neurosci., 2008, 28, 9055–9065

    Article  PubMed  CAS  Google Scholar 

  93. Champagne FA, Weaver IC, Diorio J, Dymov S, Szyf M, Meaney MJ, Maternal care associated with methylation of the estrogen receptoralpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring, Endocrinology, 2006, 147, 2909–2915

    Article  PubMed  CAS  Google Scholar 

  94. Weaver I. C., Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl J.R., et al., Epigenetic programming by maternal behavior, Nat. Neurosci., 2004, 7, 847–854

    Article  PubMed  CAS  Google Scholar 

  95. Oberlander T. F., Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin A.M., Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR 3C1) and infant cortisol stress responses, Epigenetics, 2008, 3, 97–106

    Article  PubMed  Google Scholar 

  96. Roth TL, Lubin FD, Funk AJ, Sweatt JD, Lasting epigenetic influence of early-life adversity on the BDNF gene, Biol. Psychiatry, 2009, 65, 760–769

    Article  PubMed  CAS  Google Scholar 

  97. Champagne DL, Bagot RC, van Hasselt F, Ramakers G, Meaney MJ, de Kloet ER, et al., Maternal care and hippocampal plasticity: evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress, J. Neurosci., 2008, 28, 6037–6045

    Article  PubMed  CAS  Google Scholar 

  98. Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH, Recovery of learning and memory is associated with chromatin remodelling, Nature, 2007, 447, 178–182

    Article  PubMed  CAS  Google Scholar 

  99. Arai JA, Li S, Hartley DM, Feig LA, Transgenerational rescue of a genetic defect in long-term potentiation and memory formation by juvenile enrichment, J. Neurosci., 2009, 29, 1496–1502

    Article  PubMed  CAS  Google Scholar 

  100. Zhou Z., Hong E.J., Cohen S., Zhao W.N., Ho H.Y., Schmidt L., et al., Brain-specific phosphorylation of MeCP 2 regulates activitydependent BDNF transcription, dendritic growth, and spine maturation, Neuron, 2006, 52, 255–269

    Article  PubMed  CAS  Google Scholar 

  101. Nelson E. D., Kavalali E.T., Monteggia L.M., Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation, J. Neurosci., 2008, 28, 395–406

    Article  PubMed  CAS  Google Scholar 

  102. Moretti P, Zoghbi H. Y., MeCP2 dysfunction in Rett syndrome and related disorders, Curr. Opin. Genet. Dev., 2006, 16, 276–281

    Article  PubMed  CAS  Google Scholar 

  103. Adachi M, Autry A. E., Covington H.E., Monteggia L.M., MeCP2-mediated transcription repression in the basolateral amygdala may underlie heightened anxiety in a mouse model of Rett syndrome, J. Neurosci., 2009, 29, 4218–4227

    Article  PubMed  CAS  Google Scholar 

  104. Leslie K. R., Johnson-Frey S.H., Grafton S.T., Functional imaging of face and hand imitation: towards a motor theory of empathy, Neuroimage, 2004, 21, 601–607

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goran Šimić.

About this article

Cite this article

Šešo-Šimić, Đ., Sedmak, G., Hof, P.R. et al. Recent advances in the neurobiology of attachment behavior. Translat.Neurosci. 1, 148–159 (2010). https://doi.org/10.2478/v10134-010-0020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/v10134-010-0020-0

Keywords

Navigation