Skip to main content

Expanding the Cenozoic paleoceanographic record in the Central Arctic Ocean: IODP Expedition 302 Synthesis

Abstract

The Arctic Coring Expedition (ACEX) proved to be one of the most transformational missions in almost 40 year of scientific ocean drilling. ACEX recovered the first Cenozoic sedimentary sequence from the Arctic Ocean and extended earlier piston core records from ≈1.5 Ma back to ≈56 Ma. The results have had a major impact in paleoceanography even though the recovered sediments represents only 29% of Cenozoic time. The missing time intervals were primarily the result of two unexpected hiatuses. This important Cenozoic paleoceanographic record was reconstructed from a total of 339 m sediments. The wide range of analyses conducted on the recovered material, along with studies that integrated regional tectonics and geophysical data, produced surprising results including high Arctic Ocean surface water temperatures and a hydrologically active climate during the Paleocene Eocene Thermal Maximum (PETM), the occurrence of a fresher water Arctic in the Eocene, ice-rafted debris as old as middle Eocene, a middle Eocene environment rife with organic carbon, and ventilation of the Arctic Ocean to the North Atlantic through the Fram Strait near the early-middle Miocene boundary. Taken together, these results have transformed our view of the Cenozoic Arctic Ocean and its role in the Earth climate system.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Jakobsson M., Hypsometry and volume of the Arctic Ocean and its constituent seas, Geochem. Geophy. Geosy., 2002, 3, 1–18

    Article  Google Scholar 

  2. [2]

    Green A.R., Kaplan A.A., Vierbuchen R.C., Circum-Arctic petroleum potential, American Association of Petroleum Geologists Memoirs, 1986, 40, 101–129

    Google Scholar 

  3. [3]

    Lawver L.A., Scotese C.R., A review of tectonic models for the evolution of the Canada Basin. In: Grantz A., Johnson L., Sweeney J.F. (Eds.), The Arctic Ocean Region, The Geology of North America v. L, 1990

  4. [4]

    Thiede J., The Arctic Ocean record: Key to global change, Polarforschung, 1991, 61, 1–102

    Google Scholar 

  5. [5]

    Aagaard K., Carmack E.C., The Arctic Ocean and climate: a perspective. In: Johannessen O.M., Muen-sch R.D., Overland J.E. (Eds.), The Polar Oceans and Their Role in Shaping the Global Environment, AGU Geophysics Monograph Series, 85, 1994

  6. [6]

    Driscoll N.W., Haug G.H., A short circuit in thermohaline circulation: Acause for Northern Hemisphere glaciation? Science, 1998, 282, 436–438

    Article  Google Scholar 

  7. [7]

    Grantz A., Clark D.L., Phillips R.L., Srivastava S.P., Phanerozoic stratigraphy of the Northwind Ridge, magnetic anomalies in the Canada basin, and the geometry and timing ofrifting in the Amerasia basin, Arctic Ocean, Geol. Soc. Am. Bull., 1998, 110, 801–820

    Article  Google Scholar 

  8. [8]

    Kristoffersen Y., Mikkelsen N. (Eds.), Scientific drilling in the Arctic Ocean and the site survey challenge: Tectonic, paleoceanographic and climatic evolution of the Polar Basin, Geological Survey of Denmark and Greenland, Special publication, 2004

  9. [9]

    Gradstein F.M., Introduction. In: Gradstein F.M., Ogg J.G., Smith A.G. (Eds.), A Geologic Time Scale 2004, Cambridge University Press, 2004

  10. [10]

    Vogt P.R., Taylor P.T., Kovacs L.C., Johnson G.L., Detailed aeromagnetic investigation of the Arctic Basin, J. Geophys. Res., 1979, 84, 1071–1089

    Article  Google Scholar 

  11. [11]

    Lawver L.A., Müller R.D., Srivastava S.P., Roest W., The opening of the Arctic Ocean. In: Bleil U., Thiede J. (Eds.), Geological history ofthe polar oceans: Arctic versus Antarctic, NATO ASI Series 308, 1990

  12. [12]

    Kristoffersen Y., Eurasia Basin. In: Grantz A., Johnson L., Sweeney J.F. (Eds.), The Arctic Ocean Region, The Geology of North America v. L, 1990

  13. [13]

    Jokat W., Uenzelmann-Neben G., Kristoffersen Y., Rasmussen T., ARCTIC’91: Lomonosov Ridge —a double sided continental margin, Geology, 1992, 20, 887–890

    Article  Google Scholar 

  14. [14]

    Brozena J.M., Childers V.A., Lawver L.A., Gahagan L.M., Forsberg R., Faleide J.L. et al., New aerogeophysical study of the Eurasia Basin and Lomonosov Ridge: Implications for basin development, Geology, 2003, 31, 825–828

    Article  Google Scholar 

  15. [15]

    Jackson H.R., Oakey G.N., Sedimentary thickness map of the Arctic Ocean. In: Grantz A., Johnson L., Sweeney J.F. (Eds.), The Arctic Ocean Region, The Geology of North America v. L, Plate 5, 1990

    Google Scholar 

  16. [16]

    Fütterer D.K., Arctic ’91: The expedition ARK VIII/3 of RV “Polarstern” in 1991, Ber. z. Polarfors., 1992, 107, 1–267

    Google Scholar 

  17. [17]

    Jokat W., Weigelt E., Kristoffersen Y., Rasmussen T., Schöne T., New insights into the evolution of the Lomonosov Ridge and the Eurasian Basin, Geophys. J. Int., 1995, 122, 378–392

    Google Scholar 

  18. [18]

    Moran K., Backman J., Farrell J., Deepwater drilling in the Arctic Ocean’s permanent sea ice. In: Backman J., Moran K., McInroy D., Mayer L.A. (Eds.), IODP Expedition Reports 302 (Texas A6M University, College Station, TX), 2006, DOI:10.2204/iodp.proc.302.106.2006

    Google Scholar 

  19. [19]

    Backman J., Moran K., McInroy D.B., Mayer L.A., Proc. IODP 302, Edinburgh (Integrated Ocean Drilling Program Management International, Inc.), 2006, DOI:10.2204/iodp.proc.302.2006

  20. [20]

    Ewing M., Worzel J.L., Init. Repts. DSDP 1, Washington, U.S. Govt. Printing Office, 1969

    Google Scholar 

  21. [21]

    Emiliani, C., A new global geology. In: Emiliani, C. (Ed.), The Sea, 7, The Oceanic Lithosphere, Wiley-Interscience, 1981.

  22. [22]

    Hay W.W., Paleoceanography: A review for the GSA Centennial, Geol. Soc. Am. Bull., 1988, 100, 1934–1956

    Article  Google Scholar 

  23. [23]

    Backman J., Jakobsson M., Løvlie R., Polyak L., Febo L.A., Is the central Arctic Ocean a sediment starved basin? Quaternary. Sci. Rev., 2004, 23, 1435–1454

    Article  Google Scholar 

  24. [24]

    Clark D.L., Late Mesozoic and early Cenozoic sediment cores from the Arctic Ocean, Geology, 1974, 2, 41–44

    Article  Google Scholar 

  25. [25]

    Bukry D., Paleogene paleoceanography of the Arctic Ocean is constrained by the middle or late Eocene age of USGS Core FI-422: Evidence from silicoflagellates, Geology, 1984, 12, 199–201

    Article  Google Scholar 

  26. [26]

    Ling H.Y., Early Paleogene silicoflagellates and ebridians from the Arctic Ocean, Transactions Proceedings Paleontological Society of Japan, 1985, 138, 79–93

    Google Scholar 

  27. [27]

    Thiede J., Myhre A.M., The paleoceanographic history of the North Atlantic-Arctic gateways: Synthesis of the Leg 151 drilling results. In: Thiede J., Myhre A.M., First J.V., Johnson G.L., Ruddiman W.F. (Eds.), Proc. ODP, Sci. Res., 151: College Station, TX (Ocean Drilling Program), 1996

  28. [28]

    Stigebrandt A., A model for the thickness and salinity of the upper layer in the Arctic Ocean and the relationship between the ice thickness and some external parameters, J. Phys. Oceanogr., 1981, 11, 1407–1422

    Article  Google Scholar 

  29. [29]

    Eldholm O., Skogseid J., Sundvor E., Myhre A.M., The Norwegian-Greenland Sea. In: Grantz A., Johnson L., Sweeney J.F. (Eds.), The Arctic Ocean Region, The Geology of North America, L, 1990

  30. [30]

    Kristoffersen Y., On the tectonic evolution and paleoceanographic significance of the Fram Strait. In: Bleil U., Thiede J. (Eds.), Geological history of the polar oceans: Arctic versus Antarctic, NATO ASI Series, 308, 1990

  31. [31]

    Marincovitch L. Jr., Brouwers E.M., Hopkins D.M., McKenna M.C., Late Mesozoic and Cenozoic paleogeographic and paleoclimatic history of the Arctic Ocean Basin, based on shallow-water marine faunas and terrestrial vertebrates. In: Grantz A., Johns L., Sweeney J.F. (Eds.), The Arctic Ocean Region, The Geology of North America v. L, 1990

  32. [32]

    Einarsson T., Hopkins D.M., Doell R.R., The stratigraphy of Tjörnes, northern Iceland, and the history of the Bering land bridge. In: Hopkins D.M. (Ed.), The Bering Land Bridge, Stanford University Press, 1967

  33. [33]

    Funder S., Abrahamsen N., Bennike O., Feyling-Hansen R.W., Forested Arctic: Evidence from North Greenland, Geology, 1985, 13, 542–546

    Article  Google Scholar 

  34. [34]

    Vink G.E., Morgan W.J., Zhao W.-L., Preferential rifting of continents: a source of displaced terranes, J. Geophys. Res., 1984, 89, 10072–10076

    Article  Google Scholar 

  35. [35]

    Lavier L., Steckler M., The effect of sedimentary cover on the flexural strength of continental lithosphere, Nature, 1997, 389, 476–479

    Article  Google Scholar 

  36. [36]

    Kerr R.A., Signs of a warm, ice-free Arctic, Science, 2004, 305, 1693

    Article  Google Scholar 

  37. [37]

    A. Revkin, Under all that ice, maybe oil, New York Times Science Times, 30 November 2006

  38. [38]

    T. Apenzeller, Great green north: was the ice Arctic once a warm soup of life?, National Geographic Magazine, May 2005

  39. [39]

    M. Sever, From hot to cold in the Arctic, Geotimes, August 2006

  40. [40]

    Backman, J., Moran, K., McInroy, D., IODP Expedition 302, Arctic Coring Expedition (ACEX): A first look at the Cenozoic paleoceanography of the central Arctic Ocean, Scientific Drilling, 2005, 1, 12–17

    Google Scholar 

  41. [41]

    Moran K., Backman J., Brinkhuis H., Clemens S., Cronin T., Dickens G., et al., The Cenozoic palaeoenvironment of the Arctic Ocean, Nature, 2006, 441, 601–605, DOI:10.1038/nature04800

    Article  Google Scholar 

  42. [42]

    Brinkhuis H., Schouten S., Collinson M.E., Sluijs A., Sinninghe Damsté J.S., Dickens G.R. et al., IODP Expedition 302 Scientists, Episodic fresh surface waters in the Eocene Arctic Ocean, Nature, 2006, 441, 606–609, DOI:10.1038/nature0492

    Article  Google Scholar 

  43. [43]

    Sluijs A., Schouten S., Pagani M., Woltering M., Brinkhuis H., Sinninghe Damsté J.S. et al., IODP Expedition 302 Scientists, Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum, Nature, 2006, 441, 610–613, DOI:10.1038/nature04668

    Article  Google Scholar 

  44. [44]

    Pagani M., Pendentchouk N., Huber M., Sluijs A., Schouten S., Brinkhuis H. et al., IODP Expedition 302 Scientists, The Arctic’s hydrological response to global warming during the Paleocene-Eocene thermal maximum, Nature, 2006, 442, 671–675, DOI:10.1038/nature05043

    Article  Google Scholar 

  45. [45]

    Jakobsson M., Cherkis N., Woodward J., Coakley B., Macnab R., A new grid of Arctic bathymetry: A significant resource for scientists and mapmakers, American Geophysical Union EOS Transactions, 2000, 8, 89–96

    Article  Google Scholar 

  46. [46]

    Jakobsson M., Backman J., Rudels B., Nycander J., Frank M., Mayer L. et al., The early Miocene onset of a ventilated circulation regimen in the Arctic Ocean, Nature, 2007, 447, 986–990, DOI:10.1038/nature05924

    Article  Google Scholar 

  47. [47]

    Stein R., Boucsein B., Meyer H., Anoxia and high primary production in the Paleogene central Arctic Ocean: First detailed records from the Lomonosov Ridge, Geophys. Res. Lett., 2006, 33, 1–6, DOI:10.1029/2006GL026776

    Article  Google Scholar 

  48. [48]

    Stein R., Upper Cretaceous/lower Tertiary black shales near the North Pole: Organiccarbon origin and source-rock potential, Mar. Petrol. Geol., 2007, 24, 67–73, DOI:1016/j.marpetgeo.2006.10.002

    Article  Google Scholar 

  49. [49]

    Dickens G.R., Koelling M., Smith D.C., Schneiders L., IODP Expedition 302 Scientists, Rhizon sampling of pore waters on scientific drilling expeditions: An example from the IODP Expedition 302, Arctic Coring Expedition (ACEX), Scientific Drilling, 2007, 4, 22–25

    Google Scholar 

  50. [50]

    Haley B.A., Frank M., Spielhagen R.F., Eisenhauer A., Influence of brine formation on Arctic Ocean circulation over the past 15 million years, Nature Geoscience, 2008, 1, 68–72

    Article  Google Scholar 

  51. [51]

    Cronin T., Smith S.A., Eynaud F., O’Regan M., King J., Quaternary paleoceanography of the central Arctic based on Integrated Ocean Drilling Program Arctic Coring Expedition 302 foraminiferal assemblages, Paleoceanography, 2008, 23, 1–14, PA1S18, DOI:10.1029/2007PA001484

    Article  Google Scholar 

  52. [52]

    Eynaud F., Cronin T.M., Smith S., Zaragosi S., Mavel J., Mary Y., Mas V. et al., Morphological variability of the planktonic foraminifer Neogloboquadrina pachyderma in the late Pleistocene of the ACEX cores, Micropaleontology (in press)

  53. [53]

    O’Regan M., King J., Backman J., Jakobsson M., Pälike H., Moran K. et al., Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge, Paleoceanography, 2008, 23, 1–18, PA1S19, DOI:10.1029/2007PA001551

    Google Scholar 

  54. [54]

    Frank M., Backman J., Jakobsson M., Moran K. O’Regan M., King J. et al., Beryllium isotopes in central Arctic Ocean sediments over the past 12.3 million years: Stratigraphic and paleoclimatic implications, Paleoceanography, 2008, 23, 1–12, PA1S02, DOI:10.1029/2007PA001478

    Article  Google Scholar 

  55. [55]

    Onadera J., Takahashi K., Jordan R.W., Eocene silicoflagellate and ebridian paleoceanography in the central Arctic Ocean, Paleoceanography, 2008, 23, 1–9, PA1S15, DOI:10.1029/2007PA001474

    Google Scholar 

  56. [56]

    Matthiessen J., Brinkhuis H., Poulsen N., Smelror M., Decahedrella martinheadii —a stratigraphic and paleoenvironmental acritarch indicator species for the high northern latitude late Miocene, Micropaleontology (in press)

  57. [57]

    Sangiorgi F., Brinkhuis H., Damassa S.P., Arcticacysta: A new organic-walled dinoflagellate cyst genus from the early Miocene? of the central Arctic Ocean, Micropaleontology (in press)

  58. [58]

    Sluijs A., Röhl U., Schouten S., Brumsack H.-J., Sangiorgi F., Sinninghe Damsté J.S. et al., Arctic late Paleocene-early Eocene paleoenvironments with special emphasis on the Paleocene-Eocene thermal maximum (Lomonosov Ridge, Integrated Ocean Drilling Program Expedition 302), Paleoceanography, 2008, 23, 1–17, PA1S11, DOI:10.1029/2007PA001495

    Google Scholar 

  59. [59]

    Suto I., Jordan R.W., Watanabe M., Taxonomy offossil marine diatom resting spore genus Goniotechium Ehrenberg and its allied species, Diatom Res., 2008, 23, 445–469

    Google Scholar 

  60. [60]

    Suto I., Jordan R.W., Watanabe M., Taxonomy ofmiddle Eocene diatom resting spores and their allied taxa from IODP sites in the central Arctic Ocean (Lomonosov Ridge), Micropaleontology (in press)

  61. [61]

    Suto I., Watanabe M., Jordan R.W., Taxonomy of the fossil marine diatom resting spore genus Odontotropis Grunow, Diatom Res. (in press)

  62. [62]

    Onadera J., Takahashi K., Middle Eocene ebridians in the central Arctic Ocean, IODP Expedition 302 (ACEX), Micropaleontology (in press)

  63. [63]

    Onadera J., Takahashi K., Taxonomy and biostratigraphy of silicoflagellates in the middle Eocene Arctic Ocean, Micropaleontology (in press)

  64. [64]

    Stickley C.E., Koç N., Brumsack H.-J., Jordan R.W., Suto I., A siliceous microfossil view of middle Eocene Arctic paleoenvironments: A window of biosilica production and preservation, Paleoceanograhy, 2008, 23, 1–19, PA1S14, DOI:10.1029/2007PA001485

    Google Scholar 

  65. [65]

    Backman J., Jakobsson M., Frank M., Sangiorgi F., Brinkhuis H., Stickley C. et al., Age model and core-seismic integration for the Cenozoic Arctic Coring Expedition sediments from the Lomonosov Ridge, Paleoceanography, 2008, 23, 1–15, PA1S03, DOI:10.1029/2007PA001476

    Google Scholar 

  66. [66]

    O’Regan M., Sakamoto T., King J., Data report: regional stratigraphic correlation and a revised composite depth scale for IODP Expedition 302. In: Backman, J., Moran, K., McInroy, D., Mayer, L.A. (Eds.), Proc. IODP, 302 (Texas A6M University, College Station, TX), 2008

    Google Scholar 

  67. [67]

    Spielhagen R.F., Baumann K.-H., Erlenkeuser H., Nowaczyk N.R., Nørgaard-Pedersen N., Vogt C. et al., Arctic Ocean deep-sea record of northern Eurasian ice sheet history, Quaternary Sci. Rev., 2004, 23, 1455–1483

    Article  Google Scholar 

  68. [68]

    Steuerwald B.A., Clark D.L., Andrew, J.A., Magnetic stratigraphy and faunal patterns in Arctic Ocean sediments, Earth Planet. Sci. Lett., 1968, 5, 79–85

    Article  Google Scholar 

  69. [69]

    Clark D.L., Whitman R.R., Morgan K.A., Mackay S.D., Stratigraphy and glacial-marine sediments of the Amerasian Basin, central Arctic Ocean, Geological Society of America Special Paper, 1980, 181, 1–57

    Google Scholar 

  70. [70]

    Clark D.L., Kowallis B.J., Medaris L.G., Deino A.L., Orphan Arctic Ocean metasediment clast: Local derivation from Alpha Ridge pre-2.6 Ma ice rafting? Geology, 2000, 28, 1143–1146 or[71] Lourens L.J., Hilgen F.J., Shackleton N.J., Laskar J., Wilson D., The Neogene Period. In: Gradstein F.M., Ogg J.G., Smith A.G. (Eds.), A Geologic Time Scale 2004, Cambridge University Press, 2004

    Article  Google Scholar 

  71. [72]

    Pälike H., Spofforth D.J.A., O’Regan M., Gattacecca J., Orbital scale variations and timescales from the Arctic Ocean. Paleoceanography, 2008, 23, 1–13, PA1S10, DOI:10.1029/2007PA001490

    Article  Google Scholar 

  72. [73]

    Whitmarsh R.B., Manatschal G., Minshull T.A., Evolution of magma-poor continental margins from rifting to seafloor spreading, Nature, 2001, 413, 150–154

    Article  Google Scholar 

  73. [74]

    Doré A.G., The structural foundation and evolution of Mesozoic seaways between Europe and Arctic, Palaeogeogr. Palaeocl., 1991, 87, 441–492

    Article  Google Scholar 

  74. [75]

    Dibner V.D., Geology of Franz Josef Land —An introduction, Norsk Polarinstitutt, 1998, 151, 10–17

    Google Scholar 

  75. [76]

    Dypvik H., Kokolov A., Pcelina T., Fjellsa B., Bjærke, T., Korchinskaja M., Nagy J., The Triassic succession of Franz Josef Land, stratigraphy and sedimentology of three wells from Alexandra, Hayes and Graham Bell Islands, Norsk Polarinstitutt Meddelelser, 1998, 151, 51–82

    Google Scholar 

  76. [77]

    Sangiorgi F., Brumsack H.-J., Willard D.A., Schouten S., Stickley C., O’Regan M. et al., A 26 million year gap in the central Arctic record at the greenhouse-icehouse transition: Looking for clues, Paleoceanography, 2008, 23, 1–13, PA1S04, DOI:10.1029/2007PA001477

    Google Scholar 

  77. [78]

    Moore T.C., Expedition 302 Scientists, Sedimentation and subsidence history of the Lomonosov Ridge. In: Backman J., Moran K., McInroy D.B., Mayer L.A. (Eds.), Proc. IODP 302: Edinburgh (Integrated Ocean Drilling Program Management International, Inc.), 2006, DOI:10.2204/iodp.proc.302.105.2006

  78. [79]

    O’Regan M., Moran K., Backman J., Jakobsson M., Sangiorgi F., Brinkhuis H. et al., Mid-Cenozoic tectonic and paleoenvironmental setting of the central Arctic Ocean, Paleoceanogr., 2008, 23, 1–15, PA1S20, DOI:10.1029/2007PA001559

    Google Scholar 

  79. [80]

    Parsons B., Sclater J.G., An analysis ofthe variation of ocean floor bathymetry and heat flow with age, J. Geophys. Res., 1977, 82, 803–827

    Article  Google Scholar 

  80. [81]

    Lawver L.A., Grantz A., Gahagan L.M., Plate kinematic evolution of the present Arctic region since the Ordovician. In: Miller E.L., Grantz A., Klemperer S.L., (Eds.), Tectonic evolution of the Bering Shelf-Chukchi Sea-Arctic margin and adjacent landmasses, Geological Society of America Special Paper, 2002, 360, 333–358

  81. [82]

    Drachev S.S., Savostin L.A., Groshev V.G., Bruni I.E., Structure and geology of the continental shelf of the Laptev Sea, eastern Russian Arctic, Tectonophysics, 1998, 298, 357–393

    Article  Google Scholar 

  82. [83]

    Drachev S.S., Kaul N., Beliaev V.N., Eurasia spreading to Laptev shelf transition: structural pattern and heat flow, Geophys. J. Int., 2003, 152, 688–698

    Article  Google Scholar 

  83. [84]

    Weigelt E., Jokat W., Pecularities of roughness and thickness of oceanic crust in the Eurasian Basin, Arctic Ocean, Geophys. J. Int., 2001, 145, 505–516

    Google Scholar 

  84. [85]

    Gleason J.D., Thomas D.J., Moore T.C. Jr., Blum J.D., Haley B.A., Water column structure of the Eocene Arctic Ocean from Nd-Sr isotope proxies in fossil fish debris, Geochim. Cosmochim. Ac, 2007, 71, A329-A329

    Google Scholar 

  85. [86]

    Waddell L.M., Moore T.C., Salinity of the Eocene Arctic Ocean from oxygen isotope analysis of fish bone carbonate, Paleoceanographys, 2008, 23, 1–14, PA1S12, DOI:10.1029/2007PA001451

    Google Scholar 

  86. [87]

    Knies J., Mann U., Popp B.N., Stein R., Brumsack H.-J., Surface water productivity and paleoceanographic implications in the Cenozoic Arctic Ocean, Paleoceanography 2008, 23, 1–12, PA1S16, DOI:10.1029/2007PA001455

    Article  Google Scholar 

  87. [88]

    Sangiorgi F., van Soelen E.E., Spofforth D.A.J., Pälike H., Stickley C., St. John K. et al., Cyclicity in the middle Eocene central Arctic Ocean sediment record: Orbital forcing and environmental response, Paleoceanography, 2008, 23, 1–14, PA1S08, DOI:10.1029/2007PA001487

    Google Scholar 

  88. [89]

    Spofforth D.J.A., Pälike H., Green D., Paleogene record of elemental concentrations from the Arctic Ocean obtained by XRF analyses, Paleoceanography, 2008, 23, 1–13, PA1S09, DOI:10.1029/2007PA001489

    Article  Google Scholar 

  89. [90]

    Fronval T., Jansen E., Late Neogene paleoclimates and paleoceanography in the Iceland-Norweigian Sea: evidence from the Iceland and Vøring Plateaus. In: Thiede J., Myhre A.M., Firth J.V., Johnson G.L., Ruddiman W.F. (Eds.), Proc. ODP, Sci. Results 151: College Station, TX (Ocean Drilling Program), 1996

  90. [91]

    Shackleton N.J., Backman J., Zimmerman H.B., Kent D.V., Hall M.A., Roberts D.G. et al., Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region, Nature, 1983, 307, 620–623

    Article  Google Scholar 

  91. [92]

    Ravelo A.C., Andreasen D.H., Lyle M., Olivarez Lyle A., Wara M.W., Regional climate shifts caused by global cooling in the Pliocene epoch, Nature, 2004, 429, 263–267

    Article  Google Scholar 

  92. [93]

    Haug G.H., Ganopolski A., Sigman D.M., Rosell-Mele A., Swann G.E.A, Tiedemann R. et al., North Pacific seasonality and the glaciation of North America 2.7 million years ago, Nature, 2005, 433, 821–825

    Article  Google Scholar 

  93. [94]

    Tripati A., Backman J., Elderfield H., Feretti P., Eocene bipolar glaciation associated with global carbon cycle changes, Nature, 2005, 436, 341–346

    Article  Google Scholar 

  94. [95]

    Edgar K.M., Wilson P.A., Sexton P.F., Suganuma Y., No extreme bipolar glaciations during the main Eocene calcite compensation shift, Nature, 2007, 448, 908–911, DOI:10.1038/nature06053

    Article  Google Scholar 

  95. [96]

    Lear C.H., Bailey T.R., Pearson P.N., Coxall H.K., Rosenthal Y., Cooling and ice growth across the Eocene-Oligocene transition, Geology, 2008, 36, 251–254, DOI:10.1130/G24584A.1

    Article  Google Scholar 

  96. [97]

    Elderett J.S., Harding I.C., Wilson P.A., Butler E., Roberts A.P., Continental ice in Greenland during the Eocene and Oligocene, Nature, 2007, 446, 176–179, DOI:10.1038/nature05591

    Article  Google Scholar 

  97. [98]

    Tripati A.K., Eagle R.A., Morton A., Dowdeswell J.A., Atkinson K.L., Bahé Y. et al., Evidence for glaciation in the Northern Hemisphere back to 44 Ma from icerafted debris in the Greenland Sea, Earth Planet. Sci. Lett., 2008, 265, 112–122

    Article  Google Scholar 

  98. [99]

    Miller K.G., Wright J.D., Katz M.E., Browning J.V., Cramer B.S., Wade B.S. et al., A view of Antarctic ice-sheet evolution from sea-level and deep-sea isotope changes during the Late Cretaceous-Cenozoic. In: Cooper A.K., Barrett P., Stagg H., Storey B., Stump E., Wise W. (Eds.), Antarctica: A keystone in a changing world, Proc. 10th Int. Symp. Antarctic Earth Sciences, The National Academies Press, 2008

  99. [100]

    St. John K., Cenozoic ice-rafting history of the central Arctic Ocean: Terrigenous sands on the Lomonosov Ridge, Paleoceanography, 2008, 23, 1–12, PA1S05, DOI:10.1029/2007PA001483

    Article  Google Scholar 

  100. [101]

    DeConto R.M., Pollard D., Wilson P.A., Pälike H., Lear C.H., Pagani M., Thresholds for Cenozoic bipolar glaciation. Nature, 2008, 455, 652–656, DOI:10.1038/nature07337

    Article  Google Scholar 

  101. [102]

    Krylov A.A., Andreeva I.A., Vogt C., Backman J., Krupskaya V.V., Grikurov G.E. et al., A shift in heavy and clay mineral provenance indicates a middle Miocene onset of a perennial sea ice cover in the Arctic Ocean, Paleoceanography, 2008, 23, 1–10, PA1S06, DOI:10.1029/2007PA001497

    Article  Google Scholar 

  102. [103]

    Haley B., Frank M., Spielhagen R.F., Fietzke J., Radiogenic isotope record of Arctic Ocean circulation and weathering inputs of the past 15 million years, Paleoceanography, 2008, 23, 1–16, PA1S13, DOI:10.1029/2007PA001486

    Article  Google Scholar 

  103. [104]

    Darby D.A., Arctic perennial ice cover over the last 14 million years, Paleoceanography, 2008, 23, 1–9, PA1S07, doi:10.1029/2007PA001479

    Article  Google Scholar 

  104. [105]

    Zachos J., Pagani M., Sloan L., Thomas E., Billups K., Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 2001, 292, 686–693, DOI:10.1126/science.1059412

    Article  Google Scholar 

  105. [106]

    Miller K.G., Fairbanks R.G., Mountain G.S., Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion, Paleoceanography, 1987, 2, 1–19

    Article  Google Scholar 

  106. [107]

    Amon R.M.W., Benner R., Combined neutral sugars as indicators of the diagenetic state of dissolved organic matter in the Arctic Ocean, Deep-Sea Res. I, 2003, 50, 151–169

    Article  Google Scholar 

  107. [108]

    Hedges J. I., Global biogeochemical cycles: Progress and problems, Mar. Chem., 1992, 39, 67–93

    Article  Google Scholar 

  108. [109]

    Peltier W.R., Liu Y., Crowley J.W., Snowball Earth prevention by dissolved organic carbon mineralization, Nature, 2007, 450, 813–818, DOI:10.1038/nature06354

    Article  Google Scholar 

  109. [110]

    Peltier W.R., Vettoretti G., Stastna M., Atlantic meridional overturning and climate response to Arctic Ocean freshening, Geophys. Res. Lett., 2006, 33, 1–4, L06713, DOI:10.1029/2005GL025251

    Google Scholar 

  110. [111]

    Tarasov L., Peltier W.R., Arctic freshwater forcing of the Younger Dryas cold reversal, Nature, 2005, 435, 662–665, DOI:10.1038/nature03617

    Article  Google Scholar 

  111. [112]

    Jakobsson M., Macnab R., Mayer L., Anderson R., Edwards M., Hatzky J. et al., An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses, Geophys. Res. Lett., 2008, 35, 1–5, L07602, DOI:10.1029/2008GL033520

    Article  Google Scholar 

  112. [113]

    Jakobsson M., Flodén T., IODP Expedition 302 Scientists, Expedition 302 geophysicists: integrating past data with new results. In: Backman J., Moran K., McInroy D.B., Mayer L.A. (Eds.), Proc. IODP 302: Edinburgh (Integrated Ocean Drilling Program Management International, Inc.), 2006, DOI:10.2204/iodp.proc.302.102.2006

  113. [114]

    Zachos J.C., Dickens G.R., Zeebe R.E., An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature, 2008, 451, 279–283, DOI:10.1038/nature06588

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

About this article

Cite this article

Backman, J., Moran, K. Expanding the Cenozoic paleoceanographic record in the Central Arctic Ocean: IODP Expedition 302 Synthesis. Cent. Eur. J. Geosci. 1, 157–175 (2009). https://doi.org/10.2478/v10085-009-0015-6

Download citation

Keywords

  • ocean drilling
  • Lomonosov Ridge
  • Cenozoic paleoceanography
  • Arctic tectonics