Oceanological and Hydrobiological Studies

, Volume 43, Issue 3, pp 237–246 | Cite as

Stages of the Baltic Sea evolution in the geochemical record and radiocarbon dating of sediment cores from the Arkona Basin

Original Research Paper

Abstract

Four sediment cores from the southern part of the Arkona Basin were analyzed in terms of their geochemical composition, age and stratigraphy. The main stages of the Baltic Sea: the Baltic Ice Lake, the Ancylus Lake and the Littorina Sea were identified in all the analyzed cores. The data confirmed the high water fluctuation and significant environmental changes during the Baltic Sea evolution in the Late-Glacial and the Holocene. The signs of the second regression of the Baltic Ice Lake, dated at around 11 000 cal BP, were identified at a depth of 24 m b.s.l. Regression of the Ancylus Lake, dated at 9300 cal BP, was identified at a depth of 23 m b.s.l. The most pronounced period was the transition stage between the Ancylus Lake and the Littorina Sea. The record of the Littorina Sea onset in the sediments of the Arkona Basin is marked as a sudden increase in loss on ignition, biogenic silica, magnesium, calcium, iron and strontium. The age of the Littorina Sea in the Arkona Basin was estimated as younger than 8200 cal BP.

Key words

geochemistry radiocarbon dating Baltic Ice Lake Ancylus Lake Littorina Sea Arkona Basin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrén, E., Andrén, T. & Sohlenius, G. (2000). The Holocene history of the southwestern Baltic Sea as reflected in a sediment core from the Bornholm Basin. Boreas 29: 233–250. DOI: 10.1080/030094800424259.CrossRefGoogle Scholar
  2. Bennett, K.D. (1996). Determination of the number of zones in a biostratigraphical sequence. New Phytol. 132: 155–170. DOI: 10.1111/j.1469-8137.1996.tb04521.x.CrossRefGoogle Scholar
  3. Bennike, O. & Jensen, J.B. (2013). A Baltic Ice Lake lowstand of latest Allerød age in the Arkona Basin, southern Baltic Sea. Geol. Surv. Denmark Greenl. Bull. 28: 17–20.Google Scholar
  4. Berglund, B.E., Sandgren, P., Barnekow, L., Hannon, G., Jiang, H. et al. (2005). Early Holocene history of the Baltic Sea, as reflected in coastal sediments in Blekinge, southeastern Sweden. Quat. Int. 130: 111–139. DOI: 10.1016/j.quaint.2004.04.036.CrossRefGoogle Scholar
  5. Bitinas, A. & Damušytė, A. (2004). The Littorina Sea at the Lithuanian Martitimie region. Polish Geol. Inst. Spec. Pap. 11: 37–46.Google Scholar
  6. Björck, S. (1995). A review of the history of the Baltic Sea, 13.0-8.0 ka BP. Quat. Int. 27: 19–40. DOI: 10.1016/1040-6182(94)00057-C.CrossRefGoogle Scholar
  7. Björck, S., Andrén, T. & Bo Jensen, J. (2008). An attempt to resolve the partly conflicting data and ideas on the Ancylyus-Littorina transition. Polish Geol. Inst. Spec. Pap. 23: 21–26.Google Scholar
  8. Borówka, R.K. & Cedro, B. (2011). Holocene marine ingressions in the coastal zone of the pomeranian bay based on radiocarbon assays. Geochronometria 38: 85–92. DOI: 10.2478/s13386-011-0009-6.CrossRefGoogle Scholar
  9. Borówka, R.K., Osadczuk, A., Witkowski, A., Wawrzyniak-Wydrowska, B. & Duda, T. (2005). Late Glacial and Holocene depositional history in the eastern part of the Szczecin Lagoon (Great Lagoon) basin-NW Poland. Quat. Int. 130: 87–96. DOI: 10.1016/j.quaint.2004.04.034.CrossRefGoogle Scholar
  10. Boyle, J.F. (2001). Inorganic geochemical methods in palaeolomnology. In W.M. Last, J.P. Smol (Eds.), Tracking Enviromental Change Using Lake Sediments, Volume 2: Physical and Geochemical Methods (pp. 83–141). Dordrecht-Boston-London: Kluwer Academic Publishers.Google Scholar
  11. Emelyanov, E.M. & Vaikutienė, G. (2013). Holocene environmental changes during transition Ancylus-Litorina stages in the Gdansk Basin, south-eastern Baltic Sea. Baltica 26: 71–82. DOI: 10.5200/baltica.2013.26.08.CrossRefGoogle Scholar
  12. Grimm, E.C. (1987). CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 13: 13–35. DOI: 10.1016/0098-3004(87)90022-7.CrossRefGoogle Scholar
  13. Higgins, J.A. & Schrag, D.P. (2010). Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochim. Cosmochim. Acta 74: 5039–5053. DOI: 10.1016/j.gca.2010.05.019.CrossRefGoogle Scholar
  14. Jensen, J.B., Bennike, O., Witkowski, A., Lemke, W. & Kuijpers, A. (1997). The Baltic Ice Lake in the southwestern Baltic: Sequence-, chrono- and biostratygraphy. Boreas 26: 217–236. DOI: 10.1111/j.1502-3885.1997.tb00853.x.CrossRefGoogle Scholar
  15. Jensen, J.B., Bennike, O., Witkowski, A., Lemke, W. & Kuijpers, A. (1999). Early Holocene history of the southwestern Baltic Sea: The Ancylus Lake stage. Boreas 28: 437–453. DOI: 10.1111/j.1502-3885.1999.tb00233.x.CrossRefGoogle Scholar
  16. Juggins, S. (2013). rioja: Analysis of Quaternary Science Data. R package version (0.8–5). http://cran.r-project.org/package=rioja Google Scholar
  17. Kortekaas, M., Murray, A., Sandgren, P. & Björck, S. (2007). OSL chronology for a sediment core from the southern Baltic Sea: A continuous sedimentation record since deglaciation. Quat. Geochronol. 2: 95–101. DOI: 10.1016/j.quageo.2006.05.036.CrossRefGoogle Scholar
  18. Kostecki, R. & Janczak-Kostecka, B. (2012). Holocene environmental changes in the south-western Baltic Sea reflected by the geochemical data and diatoms of the sediment cores. J. Mar. Syst. 105–108: 106–114. DOI: 10.1016/j.jmarsys.2012.06.005.CrossRefGoogle Scholar
  19. Lagerlund, E., Malmberg Persson, K., Krzyszkowski, D., Johansson, P., Dobracka, E. et al. (1995). Unexpected ice flow directions during the Late Weichselian deglaciation of the South Baltic area indicated by a new lithostratigraphy in NW Poland and NE Germany. Quat. Int. 28: 127–144. DOI: 10.1016/1040-6182(95)00028-H.CrossRefGoogle Scholar
  20. Lampe, R. (2005). Lateglacial and Holocene water-level variations along the NE German Baltic Sea coast: Review and new results. Quat. Int. 133–134: 121–136. DOI: 10.1016/j.quaint.2004.10.014.CrossRefGoogle Scholar
  21. Lemke, W., Endler, R., Tauber, F., Jensen, J.B. & Bennike, O. (1998). Late- and postglacial sedimentation in the Tromper Wiek northeast of Rügen (western Baltic). Meyniana 50: 155–173.Google Scholar
  22. Lougheed, B.C., Filipsson, H.L. & Snowball, I. (2013). Large spatial variations in coastal 14C reservoir age — A case study from the Baltic Sea. Clim. Past 9: 1015–1028. DOI: 10.5194/cp-9-1015-2013.CrossRefGoogle Scholar
  23. Mörner, N.-A. (1976). Eustatic changes during the last 8,000 years in view of radiocarbon calibration and new information from the Kattegatt region and other northwestern European coastal areas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 19: 63–85. DOI: 10.1016/0031-0182(76)90042-0.CrossRefGoogle Scholar
  24. Moros, M., Lemke, W., Kuijpers, A., Endler, R., Jensen, J.B. et al. (2002). Regressions and transgressions of the Baltic basin reflected by a new high-resolution deglacial and postglacial lithostratigraphy for Arkona Basin sediments (western Baltic Sea). Boreas 31: 151–162. DOI: 10.1111/j.1502-3885.2002.tb01063.x.CrossRefGoogle Scholar
  25. Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G. et al. (2013). Intcal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55: 1869–1887. DOI: 10.2458/azu_js_rc.55.16947.CrossRefGoogle Scholar
  26. Rößler, D., Moros, M. & Lemke, W. (2011). The Littorina transgression in the southwestern Baltic Sea: New insights based on proxy methods and radiocarbon dating of sediment cores. Boreas 40: 231–241. DOI: 10.1111/j.1502-3885.2010.00180.x.CrossRefGoogle Scholar
  27. Rotnicki, K. (2009). Identfikacja, wiek i przyczyny holocenskich ingresji i regresji Baltyku na polskim wybrzezu srodkowym [Identification, age and causes of the Holocene transgressions and regressions of the Baltic on the Polish Middle Coast]. Smołdzino: Wydawnictwo Smołdzinskiego Parku Narodowego.Google Scholar
  28. Schmölcke, U., Endtmann, E., Klooss, S., Meyer, M., Michaelis, D. et al. (2006). Changes of sea level, landscape and culture: A review of the south-western Baltic area between 8800 and 4000BC. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240: 423–438. DOI: 10.1016/j.palaeo.2006.02.009.CrossRefGoogle Scholar
  29. Sohlenius, G., Emeis, K.-C., Andrén, E., Andrén, T., Kohly, A. (2001). Development of anoxia during the Holocene fresh-brackish water transition in the Baltic Sea. Mar. Geol. 177: 221–242. DOI: 10.1016/S0025-3227(01)00174-8.CrossRefGoogle Scholar
  30. Stuiver, M. & Reimer, P.J. (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35: 215–230.Google Scholar
  31. Turekian, K.K. (1964). The marine geochemistry of strontium. Geochim. Cosmochim. Acta 28: 1479–1496. DOI: 10.1016/0016-7037(64)90163-2.CrossRefGoogle Scholar
  32. Witak, M. & Dunder, J. (2007). Holocene diatom biostratigraphy of the SW Gulf of Gdańsk, Southern Baltic Sea (part II). Oceanol. Hydrobiol. Stud. 36: 3–20. DOI: 10.2478/v10009-007-0021-6.CrossRefGoogle Scholar
  33. Witkowski, A. (1994). Recent and fossil diatom flora of the Gulf of Gdańsk the Southern Baltic Sea. Bibl. Diatomol. 28: 1–313.Google Scholar
  34. Witkowski, A., Cedro, B., Kierzek, A. & Baranowski, D. (2009). Diatoms as a proxy in reconstructing the Holocene environmental changes in the south-western Baltic Sea: The lower Rega River Valley sedimentary record. Hydrobiologia 631: 155–172.CrossRefGoogle Scholar
  35. Andrén, E., Andrén, T., Sohlenius, G. (2000). The Holocene history of the southwestern Baltic Sea as reflected in a sediment core from the Bornholm Basin. Boreas 29, 233–250. DOI: 10.1080/030094800424259.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Department of Quaternary Geology and PaleogeographyAdam Mickiewicz University in PoznańPoznańPoland

Personalised recommendations