Factors determining the accumulation of pentachlorophenol — a precursor of dioxins in bottom sediments of the Gulf of Gdańsk (Baltic Sea)

Abstract

Pentachlorophenol (PCP) and its derivatives are considered to be the precursors of dioxins, thus their concentrations in environmental compartments remain relatively correlated. Unlimited production and usage of PCP in recent decades may have posed a potential ecological threat to marine ecosystems due to uncontrolled discharge of this contaminant into the Vistula River and finally into the Gulf of Gdańsk. Since there are no data on PCP concentration in sediments of the southern part of the Baltic Sea, the level of contamination has been examined and possible influence of sediment properties in the Gulf of Gdańsk on the accumulation intensification has been investigated. The study has resulted in the evaluation of an efficient analytical procedure characterized by a low detection limit (LOD<1 ng g−1 d.w.). Instrumental analyses have been supplemented with Microtox® bioassay in order to assess the sediment toxicity. The obtained concentrations in collected samples varied from below the LOD in sandy sediments to 179.31 ng g−1 d.w. in silty sediments, exceeding the PNEC value of 25 ng g−1 d.w. (Predicted No Effect Concentration) estimated for the Baltic Sea (Muir & Eduljee 1999). It has been proven that properties of sediments from the Gulf of Gdańsk, including pH, Eh of bottom water, the content of water and organic matter, affect the rate of PCP accumulation. High toxicity has been recorded in the bottom sediments of the Gdańsk Deep but no statistically significant correlation between PCP concentration and the sediment toxicity has been observed. Analysis of PCP concentration distribution in sediment cores revealed that the surface layer is the most polluted one, which indicates a continuous inflow of PCP from the Vistula River. Horizontal PCP distribution in the sediment from the Gdańsk Deep reveals variability similar to that observed for highly chlorinated dioxins (Niemirycz & Jankowska 2011).

This is a preview of subscription content, access via your institution.

References

  1. Alonso M.C., Puig D., Silgoner I., Grasserbauer M. & Barcelo D. (1998). Determination of priority phenolic compounds in soil samples by various extraction methods followed by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A. 823: 231–239, DOI: 10.1016/j.wasman.2011.01.021

    Article  Google Scholar 

  2. Baker J.I. & Hites R.A. (2000). Is combustion the major source of polychlorinated dibenzo-p-dioxins and dibenzofurans to the environment? A Mass Balance Investigation. Environ. Sci. Technol. 34: 2879–2886. DOI: http://dx.doi.org/10.1021/es9912325.

    Article  Google Scholar 

  3. Borysiewicz M. (2008). Risk profile of pentachlorofenol, Institute Of Environmental Protection. Warsaw. Poland.

    Google Scholar 

  4. Calace N., Ciardullo S., Petronio B., Pietrantonio M., Abbodanzi F., Campisi T. & Cardellicchio N. (2005). Influence of chemical parameters (heavy metals, organic matter, sulphur and nitrogen) on toxicity of sediments from the Mar Piccolo (Taranto, Ionian Sea, Italy). Microchem. J. 79: 243–248. DOI: 10.1016/j.microc.2004.10.005.

    Article  Google Scholar 

  5. Campisi T., Abbondanzi F., Casado-Martinez C., DelValls T.A., Guerra R. & Iacondini A. (2005). Effect of sediment turbidity and color on light output measurement for Microtox Basic Solid-Phase Test. Chemosphere 60: 9–15. DOI: 10.1016/j.chemosphere.2004.12.052.

    Article  Google Scholar 

  6. Dimou A., Sakellarides Th., Sakkas V & Albanis T. 2003). Concentrations levels of phenols in seawater and sediments in marine coastal line of Pieria (Thermaikos Gulf) by HPLC-UV after SPE preconcentration, Protection and Restoration of the Environment VII. MykonoS2004. DOI: 10.1016/j.jhazmat.2008.12.117.

    Google Scholar 

  7. Dmitruk U., Zbieć E. & Dojlido J. (2006). Chlorophenols in water environment. Environmental Protection 28(3):25–28. DOI: 10.1002/clen.200700107.

    Google Scholar 

  8. Dunlap P. (1999), Quorum Regulation of luminescence of Vibrio fisheri, Journal of Molecular Microbiology and Biotechnology.1(1):5–12. DOI:10.1007/s002030050254.

    Google Scholar 

  9. Euro Chlor Risk Assessment for the Marine Environment (1999). Pentachlorophenol. OSPARCOM Region — North Sea. Draft

    Google Scholar 

  10. Furukawa, A., Otsuka, H.& Kiyono, J. (2006). Structural Damage Detection Method Using Uncertain Frequency Response Functions. Computer-Aided 283 Civil and Infrastructure Engineering 21: 292–305. DOI: 10.1177/1475921707081980.

    Article  Google Scholar 

  11. Graca B., Witek Z., Burska D., Białkowska I., Łukawska-Matuszewska K. & Bolałek J. (2006). Pore water phosphate and ammonia below the permanent halocline in the southeastern Baltic Sea and their benthic fluxes under anoxic conditions. Journal of Marine Systems 63: 141–154. DOI: 10.1016/j.jmarsys.2006.06.003.

    Article  Google Scholar 

  12. IARC (1997). Monographs and the evaluation of the carcinogenic risk of chemicals to man. Some fumigants, the herbicides 2,40D and 2,4,5-T, chlorinated dibenzodioxins and miscellaneous industrial chemicals. IARC-WHO. Lyon 15: 354–367. DOI: 10.1016/0045-6535 (92)90100-6.

    Google Scholar 

  13. Ingerslev F. & Nyholm N. (2000). Shake-flask test for determination of biodegradation rates of C-14-labeled chemicals at low concentrations in surface water systems, ECOTOX ENV.45(3):274–283. DOI: 10.1006/eesa.1999.1877.

    Article  Google Scholar 

  14. Klamer H.J.C., Leonards P.E.G., Lamoree M.H., Villerius L.A., Akerman J.E. & Bakker J.F.(2005). A chemical and toxicological profile of Dutch North Sea surface sediments. Chemosphere 58: 1579–1587. DOI: 10.1016/j.chemosphere.2004.11.027.

    Article  Google Scholar 

  15. Kramarska R., Kasiński J.R., 2008, Sedimentary environment of amber-bearing association along the polish -russian Baltic coastline, Exkurs f. und Ver?fftl.DGG. 46–57

    Google Scholar 

  16. Kwan K. & Dutka B.(1995). Comparative assessment of two Solid- Phase Toxicity Bioassays The Direct Sediment Toxicity Testing Procedure (DSTTP) and the Microtox® Solid- Phase Test (SPT). Bull. Environ. Contam. Toxicol. 55: 338–346. DOI: 10.1007/BF00206670.

    Article  Google Scholar 

  17. Lahr J.L., Maas-Diepenveen, S.C Stuijfzand, P.E.G Leonards, J.M. Druke, S. Luecker, A. Espeldoorn, L.C.M. Kerkum, L.L.P. van Stee & A.J. Hendriks (2003). Responses in sediment bioassays used in the Netherlands: can observed toxicity be explained by routinely monitored priority pollutants?. Water Research 37: 1691–1710. DOI: 10.1016/S0043-1354(02)00562-6.

    Article  Google Scholar 

  18. Liu P.Y., Zheng M.H. & Xu X.B. (2002). Phototransformation of polychlorinated dibenenzo-p-dioxins from photolysis of pentachlorophenol on soils surface. Chemosphere 46:1191–1193. ISSN: 0045-6535

    Article  Google Scholar 

  19. Łęczyński L. & Szymczak E. (2010). Własności fizyczne osadów dennych w: Fizyczne, biologiczne i chemiczne badania morskich osadów dennych (red. Bolałek J.). Gdańsk. Wydawnictwo Uniwersytetu Gdańskiego: 69–117

    Google Scholar 

  20. Magnusson K., Ekelund R., Dave G., Granmo Å., Förlin L., Wennberg L., Samuelsson M., Berggren M. & Broström-Lundén E. (1996). Contamination and correlation with toxicity of sediment samples from the Skagerrak and Kattegat. Journal of Sea Research 35(1–3): 223–234. ISSN: 1385-1101

    Google Scholar 

  21. Matuszewska K., Bialkowska I. & Bolałek J.(2003). Interdependence between phosphorus forms in sediments and iron in interstitial waters the Gulf of Gdańsk. Oceanological and Hydrobiological Studies 32: 5–14. DOI: 10.1016/j.csr.2008.01.009.

    Google Scholar 

  22. Morales C., Canosa P., Rodrigues I., Rubi E. & Cela R. (2005). Microwave assisted extraction followed by gas chromatography with tandem mass spectrometry for the determination of triclosan and two related chlorophenols in sludge and sediments. J. Chromatogr. A. 1082: 128–135. DOI: 10.1007/s11270-013-1486-4.

    Article  Google Scholar 

  23. Muir J. & Eduljee G. (1999). PCP in the freshwater and marine environment of the European Union. The Science of the Total Environment 236: 41–56. ISSN: 0048-9697.

    Article  Google Scholar 

  24. Niemirycz E. & Jankowska D. (2011). Concentration and profiles of PCDD/Fs in sediments of major polish rivers and the Gdańsk Basin — Baltic Sea. Chemosphere 85: 525–532. DOI: 10.1016/j.chemosphere.2011.08.014.

    Article  Google Scholar 

  25. Niemirycz E.(2008). Halogenated organic compounds in the environment in relation to climate change. Environmental Monitoring Library.Warsaw. 120

  26. Niemirycz E. (2010). Sprawozdanie z udziału w spotkaniu Grupy Specjalnej TZO w ramach Konwencji EKG ONZ w sprawie Transgranicznego Zanieczyszczenia Powietrza na Dalekie Odległości, Montreal, Materiały Ministerstwa Środowiska.

    Google Scholar 

  27. Niemirycz E. (2011). Dopływ substancji chemicznych do Morza Bałtyckiego, w: Uścinowicz Sz.,red., Geochemia osadów powierzchniowych Morza Bałtyckiego, 93–123

    Google Scholar 

  28. Oh J. R., Chio H. K., Hong S. H., Yim U. H., Shim W. J., Kannan N. (2005). A preliminary report of persistent organochlorine pollutants in the Yellow Sea. Marine Pollutant Bulletin, 50: 217–222.

    Article  Google Scholar 

  29. Padilla-Sanchez J.A., Plaza-Bolanos P., Romero-Gonzalez R., Garrido-Frenich A. & Martinez V.(2010). Application of a quick, easy, cheap, effective, rugged and safe-based method for the simultaneous extraction of chlorophenols, alkylphenols, nitrophenols and cresols in agricultural soils, analyzed by using gas chromatography-triple quadrupole-mass spect. J Chromatogr A. 1217: 5724. DOI: 10.1016/j.chroma.2010.07.004.

    Article  Google Scholar 

  30. Penta Task Force (1997). Submission to the commission of the European communities in connection with suggestes proposal to amend the ninth amendment to council directive 76r769. Vulcan ChemicalsrKMG-Bernuth.

    Google Scholar 

  31. Parvez S., Venkataraman C. & Mukherj (2006). A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ. Int. 32: 265–268. DOI: 10.1016/j.envint.2005.08.022.

    Article  Google Scholar 

  32. Pazdro K. (2004). Persistent Organic Pollutants in sediments from the Gulf of Gdańsk, Annual Environmental Protection 6: 63–75

    Google Scholar 

  33. Persoon G., Marsalek B., Blinova I., TÖrÖkne A., Zarina D., Manusadzianas L., Nałęcz - Jawecki G., Tofan L., Stephanova N., Tothova L. & Kolar B. (2003). Praktyczna i prosta klasyfikacja poziomu toksyczności wód pitnych i ścieków przy użyciu systemów Microbiotest.

    Google Scholar 

  34. Piekarek-Jankowska H. (2010). Klasyfikacja osadów dennych w: Fizyczne, biologiczne i chemiczne badania morskich osadów dennych (red. Bolałek J.). Gdańsk. Wydawnictwo Uniwersytetu Gdańskiego: 119–130

    Google Scholar 

  35. Rappe C. (1992). Sources of PCDDs and PCDFs, introduction, reaction, levels, patterns, profiles and trends. Chemosphere 25: 41–44. DOI: 10.1016/0045-6535(94)90103-1.

    Article  Google Scholar 

  36. Ricking M., Beckman E. & Svenson A. (2002). PAHS and Microtox acute toxicity in contaminated sediments in Sweden. J. Soils Sed 2(3): 129–136. DOI: 10.1007/BF02988464.

    Article  Google Scholar 

  37. Routti H., Bert van Bavel, Letcher R., Arukwe A., Chu S., Gabrielsen G. (2009), Concentrations, patterns and metabolites of organochlorine pesticides in relation to xenobiotic phase I and II enzyme activities in ringed seals (Phoca hispida) from Svalbard and the Baltic Sea. Environmental Pollution 157: 2428–2434. DOI: 10.1016/j.envpol.2009.03.008.

    Article  Google Scholar 

  38. Salizzato M., Pavoni B., Ghirardini A.V. & Ghetti P.F. (1998). Sediment toxicity measured using Vibrio fischeri as related to the concentrations of organic (PCBs, PAHs) and inorganic (metals, sulphur) pollutants. Chemosphere 36(14): 2949–2968. ISSN: 0045-6535.

    Article  Google Scholar 

  39. Saniewska D., Bełdowska M., Bełdowski J., Jędruch A., Saniewski M. & Falkowska L. (2014). Mercury loads into the sea associated with extreme flood. Environmental Pollution 05/2014. 191C:93–100. DOI:10.1016/j.envpol.2014.04.003

    Article  Google Scholar 

  40. Sapota G. (2006). Peristent Organic Pollutants (POPs) in bottom sediments from the Baltic Sea, Oceanological and Hydrobiological Studies. Vol. XXXV(4):295–306

    Google Scholar 

  41. Scelza R. (2008). Response of an agricultural soil to pentachlorophenol (PCP) contamination and the addition of compost or dissolved organic matter. Soil Biology & Biochemistry 40: 2162–2169. DOI: 10.1016/j.soilbio.2008.05.005.

    Article  Google Scholar 

  42. Shepard F. P.(1954). Nomenclature based on sand-silt-clay ratios, J. sediment. Petrol. 24: 151–158

    Google Scholar 

  43. Stephenson M.T. (1992). A survey of produced water studies, in: Technological, environmental issues and solutions, edited: J. P. Ray & F. Rainer Engelhardt

    Google Scholar 

  44. Sundqvist K. (2009). Sources of dioxins and other POPs to the marine environment: Identification and apportionment using pattern analysis and receptor modelling. Doctoral Dissertation. Umeå University. Sweden

    Google Scholar 

  45. Sundqvist K., Tysklind M., Cato I., Bignert A. & Wiberg K. (2009). Levels and homologue profiles of PCDD/Fs in sediments along the Swedish coast of the Baltic Sea, Environmental Science Pollution Reaserch 16: 396–419. DOI: 10.1007/s11356-009-0110-z.

    Article  Google Scholar 

  46. Svenson A., Edsholt E., Ricking M., Remberger M. & Röttorp J.(1996). Sediment contaminats and Microtox Toxicity Tested in a Direct Contact Exposure Test. Environmental Toxicology and Water Quality, An International Journal. 11: 293–300

    Article  Google Scholar 

  47. SWEPA (2009). The role of pentachlorophenol treated wood for emissions of dioxins into the environment. Report 5935

    Google Scholar 

  48. Szefer P. (2002). Metals, metalloids and radionuclides in the Baltic Sea ecosystem. Elsevier Science. B.V., Amsterdam.

    Google Scholar 

  49. Szefer P., Glasby G.P., Kusak A., Szefer K., Jankowska H., Wołowicz M. & Ali A.A (1998). Evaluation of anthropogenic influx of metallic pollutants into Puck Bay, southern Baltic. Appl. Geochem. 13: 293–304. ISSN: 0883-2927.

    Article  Google Scholar 

  50. Szefer P., Glasby G.P., Pempkowiak J. & Kaliszan R. (1995). Extraction studies of heavy-metal pollutants in surficial sediments from the southern Baltic Sea of Poland, Chem. Geol. 120: 111–126. ISSN:0967-0653.

    Article  Google Scholar 

  51. US EPA (1984). Wood preservative pesticides: Creosote, pentachlorophenol, inorganic arsenicals. Position document 4. Washington. DC: U.S. Environmental Protection Agency. Office of Pesticides and Toxic Substances

    Google Scholar 

  52. Uścinowicz Sz. (1997). Basen Gdański. Przegląd Geologiczny 45(6): 589–594.

    Google Scholar 

  53. Uścinowicz Sz., Kramarska R. & Przeździecki R. (2008). Rozpoznanie i wizualizacja budowy geologicznej Zatoki Gdańskiej dla potrzeb gospodarowania zasobami naturalnymi. Centr. Arch. Geol. Państw. Inst. Geol., Oddz. Geologii Morza, Gdańsk

    Google Scholar 

  54. Uścinowicz Sz., Narkiewicz W. & Sokołowski K. (2003). Mineralogical composition and granulometry. W: Contaminants in the Baltic Sea sediments (red. M. Perttilä). MERI Report Series of the Finnish Institute of Marine Research 50: 21–24.

    Google Scholar 

  55. Uścinowicz Sz., Szefer P. & Sokołowski K (2010). Pierwiastki śladowe w osadach Morza Bałtyckiego w: Fizyczne, biologiczne i chemiczne badania morskich osadów dennych (red. Bolałek J.). Gdańsk. Wydawnictwo Uniwersytetu Gdańskiego: 214–272

    Google Scholar 

  56. Verta M & Sunqvist C. (2007). Dioxin concentrations in sediments of the Baltic Sea - a survey of existing data. Chemosphere 67: 1762–1775. DOI: 10.1016/j.chemosphere.2006.05.125.

    Article  Google Scholar 

  57. Vigano L., Arillo A., Buffagni A., Camusso M., Ciannarella R., Crosa G., Falugi C., Gallasi S., Guzzella L., Lopez A., Mingazzini M., Pagnotta R., Patrolecco L., Tartari G. & Valsecchi S. (2003). Quality assessment of bed sediments of the Po River (Italy), Water Research 37(3):501–518

    Article  Google Scholar 

  58. Wang L., Huang W., Shao X. & Lu X. (2003). An organic solvent-free microwave-assisted extraction of some priority pollutants of phenols in lake sediments. Anal Sci. 19: 1487–90. DOI: 10.1016/j.aca.2013.04.026.

    Article  Google Scholar 

  59. Wentworth C.A. (1922). Scale of grade and class terms for clastic sediments. J. Geol., 30

  60. Zalewski M. (2011). Odpływ Wisłą związków azotu i fosforu na tle zmian produkcji pierwotnej rejonu Basenu Gdańskiego, praca doktorska

    Google Scholar 

  61. Zheng, M. H.; Zhang, B.; Bao, Z. C.; Yang, H.; Xu, X. B.(2000). Analysis of pentachlorophenol from water, sediments, and fish bile of Dongting lake in China. Bulletin of Environmental Contamination and Toxicology. 64(1): 16–19. DOI 10.1007/s001289910003

    Article  Google Scholar 

  62. Żurek J. (2002). Konwencja Sztokholmska w sprawie trwałych zanieczyszczeń organicznych. Konwencje międzynarodowe i uchwały organizacji międzynarodowych. Instytut Ochrony Środowiska.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elżbieta Niemirycz.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kobusińska, M., Skauradszun, M. & Niemirycz, E. Factors determining the accumulation of pentachlorophenol — a precursor of dioxins in bottom sediments of the Gulf of Gdańsk (Baltic Sea). Ocean and Hydro 43, 154–164 (2014). https://doi.org/10.2478/s13545-014-0128-9

Download citation

Key words

  • pentachlorophenol
  • persistent organic pollutants
  • toxicity
  • sediments
  • Gulf of Gdańsk
  • Baltic Sea