Skip to main content
Log in

The impact of land use and water quality on the flora of ecotones along a small lowland river (Central Poland)

  • Original Research Paper
  • Published:
Oceanological and Hydrobiological Studies

Abstract

The presented study describes the plant species diversity within the terrestrial-water ecotone in relation to the land-use form in a river valley. The study was performed in a lowland river valley where the main forms of riparian zones are partially urbanized, forested and agricultural; the latter being most commonly observed in the investigated region. The present study examines the vascular flora of ecotones where more than 100 plant species were identified. Ecological indices were calculated at all sampling sites based on Zarzycki’s ecological values and biodiversity indices. In addition, the aim of the study was to identify the relationships between the physico-chemical parameters of the water and the floristic indicators in the neighbouring ecotones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EZ:

built-up ecotones

EL:

alder forest ecotones

ER:

agricultural ecotones

IV:

Indicator values

References

  • Aguiar F.C. & Ferreira M.T. (2005). Human-disturbed landscapes: effects on composition and integrity of riparian woody vegetation in the Tagus River basin. Portugal. Environ. Conserv. 32(1): 30–41. DOI:10.1017/S0376892905001992

    Article  Google Scholar 

  • Allan J.D. & Flecker S.A. (1993). Biodiversity conservation in running waters. BioScience 43(1): 32–443. DOI: 10.2307/1312104

    Article  Google Scholar 

  • Anbumozhi V., Radhakrisham J. & Yamaji, E. (2005). Impact of riparian buffer zone on water quality and associated management considerations. Ecol. Eng. 24(5): 517–523. http://dx.doi.org/10.1016/j.ecoleng.2004.01.007

    Article  Google Scholar 

  • Baart I., Gschöpf C., Blaschke A.P., Preiner S. & Hein, T. (2010). Prediction of potential macrophytes development in response to restoration measures in an urban riverine wetland. Aquat. Bot. 93(3): 153–162. http://dx.doi.org/10.1016/j.aquabot.2010.06.002

    Article  Google Scholar 

  • Bastviken D., Olsson M. & Tranvik L. (2003). Simultaneous measurements of organic carbon mineralization and bacterial production in oxic and anoxic lake sediments. Microb. Ecol. 46(1): 73–82. DOI: 10.1007/s00248-002-1061-9

    Article  Google Scholar 

  • Berka C., Schreier H. & Hall K. (2001). Linking water quality with agricultural intensification in a Rural Watershed. Water Air Soil Pollut. 127(1–4): 389–401. DOI: 10.1023/A:1005233005364

    Article  Google Scholar 

  • Bilby R.E. & Bisson P.A. (1998). Function and distribution of large woody debris. In: Naiman R.J., Bilby R.E. (Eds.), River ecology and management: Lessons from the Pacific Coast (pp. 324–398). Springer, New York

    Google Scholar 

  • Bodeux A. (1955). Alnetum glutinosae. Mitt. Florist.-Soziol. Arbsgem. 5: 114–137.

    Google Scholar 

  • Bornette G., Amoros C. & Lamouroux L. (1998). Aquatic plant diversity in riverine wetlands: the role of connectivity. Freshwater Biol. 39(2): 267–283. DOI: 10.1046/j.1365-2427.1998.00273.x

    Article  Google Scholar 

  • Braskerud B.C. (2002). Factors affecting nitrogen retention in small constructed wetlands treating agricultural non-point source pollution. Ecol. Eng. 18(3): 351–370. http://dx.doi.org/10.1016/S0925-8574(01)00099-4

    Article  Google Scholar 

  • Chin A. (2006). Urban transformation of river landscapes in a global context. Geomorphology 79(3–4): 460–487. http://dx.doi.org/10.1016/j.geomorph.2006.06.033

    Article  Google Scholar 

  • Clerici N., Weissteiner C.J., Paracchini M.L., Boschetti L., Baraldi A. & Strobl P. (2013). Pan-European distribution modelling of stream riparian zones based on multi-source Earth Observation data. Ecol. Indic. 24: 211–223. http://dx.doi.org/10.1016/j.ecolind.2012.06.002

    Article  Google Scholar 

  • Darveau M., Labbe P., Beauchesne P., Belanger L. & Huot J. (2001). The use of riparian forest strips by small mammals in a boreal balsam fir forest. Forest Ecol. Manage. 143(1–3): 95–104. http://dx.doi.org/10.1016/S0378-1127(00)00509-0

    Article  Google Scholar 

  • Davies B., Biggs J., Williams P., Whitfield M., Nicolet P., Sear D., Bray S. & Maund S. (2008). Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agric. Ecosyst. Environ. 125(1–4): 1–8. http://dx.doi.org/10.1016/j.agee.2007.10.006

    Article  Google Scholar 

  • Douda J. (2008). Formalized classification of the vegetation of alder carr and floodplain forests in the Czech Republic. Preslia 80: 199–224.

    Google Scholar 

  • Dufrêne M. & Legendre P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67(3): 345–366. http://dx.doi.org/10.1890/0012-9615(1997)067 [0345:SAAIST]2.0.CO;2

    Google Scholar 

  • Fernandes M.R., Aguiar F.C. & Ferreira M.T. (2011). Assessing riparian vegetation structure and the influence of land use using landscape metrics and geostatistical tools. Landscape Urban Plan. 99(2): 166–177. http://dx.doi.org/10.1016/j.landurbplan.2010.11.001

    Article  Google Scholar 

  • Ferreira M.T., Albuquerque A., Aguiar F.C. & Sidorkewicz N. (2002). Assessing reference sites and ecological quality of river plant assemblages from an Iberian basin using a multivariate approach. Archiv fur Hydrobiologie 155(1): 121–145.

    Google Scholar 

  • Florsheim J.L., Mount J.F. & Chin A. (2008). Bank erosion as a desirable attribute of rivers. BioScience 58(6): 519–529. DOI: 10.1641/B580608

    Article  Google Scholar 

  • Freeman R.E. & Ray R.O. (2001). Landscape ecology practice by small scale river conservation groups. Landscape Urban Plan. 56(3–4): 171–184. http://dx.doi.org/10.1016/S0169-2046(01)00181-5

    Article  Google Scholar 

  • Gaudi A. (2005). The human impact on the natural environment. Past, present and future. sixth ed. Blackwell Publishing

    Google Scholar 

  • Greenway M. & Woolley A. (1999). Constructed wetlands in Queensland: Performance efficiency and nutrient bioaccumulation. Ecol. Eng. 12(1–2): 39–55. http://dx.doi.org/10.1016/S0925-8574(98)00053-6

    Article  Google Scholar 

  • Greenway M. & Woolley A. (2001). Changes in plant biomass and nutrient removal over 3 years in a constructed free water surface flow wetland in Cairns, Australia. Wat. Sci. Tech. 44(11–12): 303–310.

    Google Scholar 

  • Hald A.B. (2002). Impact of agricultural fields on vegetation of stream border ecotones in Denmark. Agric. Ecosyst. Environ. 89(1–2): 127–135. http://dx.doi.org/10.1016/S0167-8809(01)00324-3

    Article  Google Scholar 

  • Harrison M.D., Groffman P.M., Mayer P.M., Kaushal S.S. & Newcomer T.A. (2011). Denitrification in alluvial wetlands in an urban landscape. J. Environ. Qual. 40(2): 634–646. DOI: 10.2134/jeq2010.0335

    Article  Google Scholar 

  • Keller E.A. & MacDonald A. (1995). River channel change: The role of large woody debris. In: Gurnell, A., Petts, G., (Eds.), Changing river channel. 217–235. Wiley, New York

    Google Scholar 

  • Londo G. (1976). The decimal scale for relevés of permanent quadrats. Vegetatio 33(1): 61–64. DOI: 10.1007/BF00055300

    Article  Google Scholar 

  • Malmqvist B. & Rundle S. (2002). Threats to the running water ecosystems of the world. Environ. Conserv. 29(2): 134–153. DOI:10.1017/S0376892902000097

    Article  Google Scholar 

  • Manolaki P. & Papastergiodou E. (2013). The impact of environment factors on the distribution pattern of aquatic macrophytes in a middle-sized Mediterranean stream. Aquat. Bot. 104: 34–46. http://dx.doi.org/10.1016/j.aquabot.2012.09.009

    Article  Google Scholar 

  • Matuszkiewicz J.M. (2002). Zespoły leśne Polski. PWN, Warsaw, (in Polish).

    Google Scholar 

  • Matuszkiewicz J.M. (2008). Potential natural vegetation of Poland, IGiPZ PAN, Warsaw.

    Google Scholar 

  • McCune B. & Mefford M.S. (2011). PcOrd multivariate analysis of ecological data, version 6.06. MjM Software Design, Gleneden Beach, Oregon.

    Google Scholar 

  • MEA — Millennium Ecosystem Assessment. (2005). Ecosystems and Human Wellbeing: Synthesis Report. Island Press, Washington, DC.

    Google Scholar 

  • Meuleman A.F.M., Beekman J.P.H. & Verhoeven J.T.A. (2002). Nutrient retention and nutrient-use efficiency in Phragmites australis stands after wastewater application. Wetlands 22(4): 712–721. DOI: 10.1672/02775212(2002)022[0712:NRANUE]2.0.CO;2

    Article  Google Scholar 

  • Meybeck M. (2001). Global alterations of riverine geochemistry under human pressure. In: Ehlers E. (Ed.), Understanding the earth system: compartments, processes and interactions (pp. 97–113). Springer-Verlag, Heidelberg.

    Chapter  Google Scholar 

  • Milner A.M. & Gloyne-Phillips I.T. (2005). The role of riparian vegetation and woody debris in the development of macroinvertebrate assemblages in streams. River Res. Appl. 21: 403–420. DOI: 10.1002/rra.815

    Article  Google Scholar 

  • Minchinton T., Simpson J. & Bertness M. (2006). Mechanisms of exclusion of native coastal marsh plants by an invasive grass. J. Ecol. 94(2): 342–354. DOI: 10.1111/j.1365-2745.2006.01099.x

    Article  Google Scholar 

  • Mooney A.C. & Marshall E.J.P. (2001). The influence of sown margin strips management and boundary structure on herbaceous field margin vegetation in two neighbouring farms in southern England. Agric. Ecosyst. Environ. 86(2): 187–202. http://dx.doi.org/10.1016/S0167-8809(00)00283-8

    Article  Google Scholar 

  • Naiman R., Decamps H. & McClain M. (2005). Riparia — Ecology, Conservation, and Management of Streamside Communities (pp 448). Academic Press.

    Google Scholar 

  • Naiman R.J. & Decamps, H. (1997). The ecology of interfaces — riparian zones. Annu. Rev. Ecol. Syst. 28: 621–658. Stable URL: http://www.jstor.org/stable/2952507

    Article  Google Scholar 

  • Palink B.J., Zassada J.C. & Hedman C.W. (2000). Ecological principles for riparian silviculture. In: Verry E., Hornbeck J.W. & Dolloff C.A. (Eds.), Riparian Management in Forests of the Continental Eastern United States (pp. 233–254). Lewis Pubs, Washington DC.

    Google Scholar 

  • Patten D. T. (1998). Riparian ecosystems of semi-arid North America: Diversity and human impacts. Wetlands 18(4): 498–512. DOI: 10.1007/BF03161668

    Article  Google Scholar 

  • Pedroli B., de Blust G., Van Looy K. & Van Rooij S. (2002). Setting targets in strategies for river restoration. Landsc. Ecol. 17(1): 5–18. DOI: 10.1023/A:1015221425315

    Article  Google Scholar 

  • Prieditis N. (1997). Alnus glutinosa — dominated wetland forests of the Baltic Region: community structure, syntaxonomy and conservation. Plant Ecol. 129(1): 49–94. DOI:10.1023/A:1009759701364

    Article  Google Scholar 

  • Richardson J.S. (2008). Aquatic arthropods and forestry: large-scale land-use effects on aquatic systems in nearctic temperate regions. Can. Entomol. 140(4): 495–509. DOI: http://dx.doi.org/10.4039/n07-LS04

    Article  Google Scholar 

  • Rodewald A.D. (2003). The importance of land use uses within the landscape matrix. Wildlife Society Bulletin 31(2): 586–592. http://www.jstor.org/stable/3784344

    Google Scholar 

  • Rodewald A.D. & Bakermans, M.H. (2006). What is the appropriate paradigm for riparian forest conservation? Biol. Conserv. 128(2): 193–200. http://dx.doi.org/10.1016/j.biocon.2005.09.041

    Article  Google Scholar 

  • Sirivedhin T. & Gray K.A. (2006). Factors affecting denitrification rates in experimental wetlands: field and laboratory studies. Ecol. Eng. 26(2): 167–181 http://dx.doi.org/10.1016/j.ecoleng.2005.09.001

    Article  Google Scholar 

  • Sudduth E.B. & Meyer J.L. (2006). Effects of bioengineered streambank stabilization on bank habitat and macroinvertebrates in urban streams. Environ. Manag. 38(2): 218–226. DOI:10.1007/s00267-004-0381-6

    Article  Google Scholar 

  • Sweeney B.W., Bott T.L., Jackson J.K., Kaplan L.A., Newbold J.D., Standley L.J., Hession W.C. & Horwitz R.J. (2004). Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proc. Natl. Acad. Sci. U.S.A. 101(39): 14132–14137. DOI:10.1073/pnas.0405895101

    Article  Google Scholar 

  • Szoszkiewicz K., Zbierska J., Jusik Sz., Zgoła T. (2010). Makrofitowa Metoda Oceny Rzek — Podręcznik metodyczny do oceny i klasyfikacji stanu ekologicznego wód płynących w oparciu o rośliny wodne. Wyd. Bogucki, Poznań. pp. 82.

    Google Scholar 

  • Toet S., Huibers L.H.F.A., Van Logtestijn R.S.P. & Verhoeven J.T.A. (2003). Denitrification in the periphyton associated with plant shoots and in the sediment of a wetland system supplied with sewage treatment plant effluent. Hydrobiologia 501(1–3): 29–44. DOI:10.1023/A:1026299017464

    Article  Google Scholar 

  • Water Framework Directive 2000/60/EC. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2000:327:0001:0072:EN:PDF

  • Verry E.S., Dolloff C.A. & Manning M.E. (2004). Riparian ecotone: a functional definition and delineation for resource assessment. Water Air Soil Pollut. 4(1): 67–94. DOI: 10.1023/B:WAFO.0000012825.77300.08.

    Article  Google Scholar 

  • Weiher E. & Keddy P.A. (1995). The assembly of experimental wetland plant communities. Oikos 73: 323–335.

    Article  Google Scholar 

  • Weisner S.E.B., Eriksson P.G., Grane’li W. & Leonardson L. (1994). Influence of aquatic macrophytes on nitrate removal in wetlands. Ambio 23: 363–366.

    Google Scholar 

  • Weisner S.E.B. & Thiere G. (2010). Effects of vegetation state on biodiversity and nitrogen retention in created wetlands: a test of the biodiversity-ecosystem functioning hypothesis. Freshwater Biol. 55(2): 387–396. DOI: 10.1111/j.1365-2427.2009.02288.x.

    Article  Google Scholar 

  • Zalewski M., Bis B., Łapińska M., Frankiewicz P. & Puchalski W. (1998). The importance of the riparian ecotone and river hydraulics for sustainable basin-scale restoration scenarios. Aquatic Conserve: Mar. Freshw. Ecosts. 8(2): 287–307. DOI: 10.1002/(SICI)1099-0755(199803/04)8:2〈287::AID-AQC274〉3.0.CO;2-R.

    Article  Google Scholar 

  • Zarzycki K., Trzcińska-Tacik H., Różański W., Szeląg Z., Wołek J. & Korzeniak U. (2002). Biodiversity of Poland. 2. Ecological indicator values of vascular plants of Poland. W. Szafer Institute of Botany, Polish Academy of Sciences, Cracow. ISBN 83-85444-95-5.

    Google Scholar 

  • Zedler J.B. & Kercher S. (2004). Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Critical Reviews in Plant Sciences 23(5): 431–452. DOI: 10.1080/07352680490514673.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Kopeć.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopeć, D., Dałkowski, R., Walisch, M. et al. The impact of land use and water quality on the flora of ecotones along a small lowland river (Central Poland). Ocean and Hydro 43, 138–146 (2014). https://doi.org/10.2478/s13545-014-0126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13545-014-0126-y

Key words

Navigation