Antibiotic resistance of Staphylococcus-like organisms isolated from a recreational sea beach on the southern coast of the Baltic Sea as one of the consequences of anthropogenic pressure

Abstract

Antibiotic resistance of Staphylococcus-like organisms (STLO) isolated from a recreational sea beach located on the southern coast of the Baltic Sea was studied. The results of the present study showed that STLO inhabiting sand and seawater of the beach strongly differed in the resistance level to tested antibiotics. These microorganisms were most resistant to ampicillin, penicillin, oxytetracycline and susceptible to gentamicin, neomycin and streptomycin. Moreover, the level of antibiotic resistance among bacteria isolated from different parts of the beach also differed. Bacteria inhabiting the seawater, shoreline and the middle part of the beach were more antibiotic-resistant than bacteria isolated from the dune. The majority of bacteria inhabiting the seawater and sand were resistant to 3–8 antibiotics out of 12 tested in this study. Generally, there was no difference in antibiotic resistance between Staphylococcus-like organisms isolated from the surface and subsurface sand layers. STLO strains isolated from Ustka Beach were most resistant to β-lactam and tetracycline antibiotics, and most susceptible to aminoglycosides.

This is a preview of subscription content, log in to check access.

References

  1. Abou-Elela, G.M. El-Sersy, N.A. Abd-Elnaby H. & Wefky S.H. (2009). Distribution and bio-diversity of fecal indicators and potentially harmful pathogens in North Delta (Egypt). Australian Journal of Basic and Applied Sciences, 3(4), 3374–3385.

    Google Scholar 

  2. Akinbowale, O.L. Peng H. & Barton M.D. (2006). Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. Journal Applied Microbiology, 100(5), 1103–1113. DOI: 10.1111/j.1365-2672.2006.02812.x

    Article  Google Scholar 

  3. Aminov, R.I. (2009). The role of antibiotics and antibiotic resistance in nature. Environmental Microbiology, 11(12), 2970–2988. DOI:10.1111/j.1462-2920.2009.01972.x

    Article  Google Scholar 

  4. Arvanitidou M. Tsakris, A. Constantindis T.C. & Katsouyannopulus V.C. (1997). Transferable antibiotic resistance among Salmonella strains isolated from surface water. Water Research, 31(5), 1112–1116. DOI: http://dx.doi.org/10.1016/S0043-1354(96)00340-5

    Article  Google Scholar 

  5. Belèm - Costa, A.B. & Cyrino J.E. (2006). Antibiotic resistance of Aeromonas hydrophila isolated from Piaractus mesopotamicus (Holmberg 1887) and Oreochromis niloticus (Linnaeus, 1758). Scientia Agricola, 63(3), 281–284. DOI: http://dx.doi.org/10.1590/S0103-90162006000300011

    Article  Google Scholar 

  6. Chopra I. & Roberts M. (2001). Tetracycline antibiotics: Model action, applications, molecular biology and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews, 65(2), 232–260. DOI: 10.1128/MMBR.65.2.232-260.2001

    Article  Google Scholar 

  7. Clark, A. Turner, T. Dorothy, K.P. Goutham, J. Klavati C. & Rajanna B. (2003). Health hazards due to pollution of waters along the coast of Visakhapatnam, east coast of India. Ecotoxicology and Environmental Safety, 56(3), 390–397. DOI:10.1016/S0147-6513(03)00098-8

    Article  Google Scholar 

  8. Diep, B.A. Sensabaugh, G.F. Somboona, S. Carleton A. & Pardreau-Remington F. (2004). Widespread Skin and Soft-Tissue Infections Due to Two Methicillin-Resistant Staphylococcus aureus Strains Harboring the Genes for Panton-Valentine Leucocidin. Journal of Clinical Microbiology, 42(5), 2080–2084. DOI: 10.1128/JCM.42.5.2080-2084.2004

    Article  Google Scholar 

  9. Efuntoye, M.O. (2010). Study of antibiotic sensitivity pattern and enetrotoxigenicity of Staphylococci isolated from swimming pools in Ibadan, Nigeria. World Applied Science Journal, 9(11), 1324–1327.

    Google Scholar 

  10. Ellery W.N. & Schleyer M.H. (1984). Comparison of homogenization and ultrasonication as techniques in extracting attached sedimentary bacteria. Marine Ecology Progress Series, 15, 247–250.

    Article  Google Scholar 

  11. Elmir, S.M. Wright, M.E. Abdelzaher, A. Solo - Gabriele, H.N. Fleming, L.E. Miller, G. Rybolowik, M. Shih, M.T. Pillai, P. Copoer J.E. & Quaye E.A. (2007). Quantitative evaluation of bacteria released by bathers in marine water. Water Research, 41(1), 3–10.

    Article  Google Scholar 

  12. Epstein, S.S. & Rossel J. (1995). Enumeration of sandy sediment bacteria: search for optimal protocol. Marine Ecology Progress Series, 117, 289–298. DOI:10.3354/meps117289

    Article  Google Scholar 

  13. Herwig, R.P. Gray J.P. & Weston D.P. (1997). Antibacterial resistant bacteria in surficial sediments near salmon net-cage farms in Puget Sound, Washington. Aquaculture, 149(3), 263–283. DOI: http://dx.doi.org/10.1016/S0044-8486(96)01455-X

    Article  Google Scholar 

  14. Jocz, J. (2010). Dynamic concentration of protein and chlorophyll in sand beach of different anthropopressure. Master’s thesis, AP Słupsk pp.47

    Google Scholar 

  15. Klapes, N.A. (1983). Comparison of Vogel-Johnson and Baird-Parker media for membrane filtration recovery of staphylococci in swimming pool water. Applied and Environmental Microbiology, 46(6), 1318–1322.

    Google Scholar 

  16. Kramarska, R. Uscinowicz, Sz. Zachowicz, J. Przezdziecki, P. Warzocha, J. Netzel J. & Janusz J. (2003) Identification of submarine deposit drifts to artificial swelling. Department of Marine in Słupsk (in Polish).

    Google Scholar 

  17. Manivasagan, P. Rajaram, G. Ramesh, S. Ashokkumar S. & Damotharan P. (2011). Occurrence and seasonal distribution of antibiotic resistance heterotrophic bacteria and physico-chemical characteristics of Muthupettai mangrove environment, southeast coast of India. Journal of Environmental Science and Technology, 4(2), 139–149. DOI: 10.3923/jest.2011.139.149

    Article  Google Scholar 

  18. Meirelles-Pereira, F. Santos-Pereira, A.M. Gomes de Silva, M.C. Gonealves, V.D. Brum, P.B. De Castro, A. Pereira A.A. & Esteves Pereira J.A.A. (2002). Ecological aspects of the antimicrobial resistance in bacteria of importance to human infection. Brazilian Journal of Microbiology, 33(4), 287–293. DOI: http://dx.doi.org/10.1590/S1517-83822002000400002

    Article  Google Scholar 

  19. Mudryk, Z. (2005). Occurrence and distribution antibiotic resistance of heterotrophic bacteria isolated from a marine beach. Marine Pollution Bulletin, 50(1), 80–86. DOI: 10.1016/j.marpolbul.2004.10.001

    Article  Google Scholar 

  20. Mudryk, Z. & Skórczewski P. (1998). Antibiotic resistance in marine neustonic and planktonic bacteria isolated from the Gdańsk Deep. Oceanologia, 40(2), 125–136.

    Google Scholar 

  21. Mudryk, Z. & Skórczewski P. (2009). Frequency of antibiotic resistance in bacteria inhabiting water of down pond. Baltic Coastal Zone, 13, 135–146.

    Google Scholar 

  22. Mudryk, Z. Perliński P. & Skórczewski P. (2010). Detection of antibiotic resistant bacteria inhabiting the sand of non-recreational marine beach. Marine Pollution Bulletin, 60(2), 207–214. DOI: 10.1016/j.marpolbul.2009.09.025

    Article  Google Scholar 

  23. Okuma, K. Iwakawa, K. Turnidge, J.D. Grubb, W.B. Bell, J.M. Brien, G.O. Coombos, G. Pearman, J.W. Tenover, F. Kapi, M. Tiensasitron, C. Ito T. & Hiramatsu K. (2002). Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. Journal of Clinical Microbiology, 40(11), 4289–4294. DOI: 10.1128/JCM.40.11.4289-4294.2002

    Article  Google Scholar 

  24. Oliveira, A.J.C. de Franco P.T.R. & Pinto A.B. (2010). Antimicrobial resistance of heterotrophic marine bacteria isolated from seawater and sands of recreational beaches with different organic pollution levels in southeastern Brazil: evidences of resistance dissemination. Environmental Monitoring and Assessment, 169(1–4), 375–384. DOI 10.1007/s10661-009-1180-6

    Article  Google Scholar 

  25. Orozova, P. Chikova, V. Kolarova, V. Nenova, R. Konovska M. & Najdenski H. (2008). Antibiotic resistance of potentially pathogenic Aeromonas strains. Trakia Journal of Sciences, 6(1), 71–77.

    Google Scholar 

  26. Perliński, P. & Mudryk Z. (2009). Inhibitory effect of antibiotics on the growth of heterotrophic bacteria inhabiting marine beach. Baltic Coastal Zone, 13b, 15–24.

    Google Scholar 

  27. Piechocka, A. (2010). Dynamic concentration of carbohydrates and lipids in sand beach of different anthropopressure. Master’s thesis, AP Słupsk pp.60

    Google Scholar 

  28. Ramesh, S. Manivasagan, S. Ashokkumar, S. Rajaram G. & Mayavu P. (2010). Plasmid profiling and multiple antibiotic resistance of heterotrophic bacteria isolated from Muthupettai mangrove environment, southeast coast of India. Current Research Bacteriology, 3(4), 227–237. DOI: 10.3923/crb.2010.227.237

    Article  Google Scholar 

  29. Reinthaler, F.F. Posch, J. Feierl, G. Wüst, G. Haas, D. Ruckenbauer, G. Maschar F. & Marth E. (2003). Antibiotic resistance of E.coli in sewage and sludge. Water Research, 37(8), 1685–1690. DOI: http://dx.doi.org/10.1016/S0043-1354(02)00569-9

    Article  Google Scholar 

  30. Ryu, D.H. & Rando R.R. (2001). Aminoglycoside binding to human and bacterial A-site rRNA decoding region constructs. Bioorganic &Medicinal Chemistry Letters, 9(10), 2601–2608. DOI:10.1016/S0968-0896(01)00034-7

    Article  Google Scholar 

  31. Saavedra, M.J. Guedes-Novais, S. Alves, A. Rema, P. Tacão, M. Correla A. & Martinez-Murcia A. (2004). Resitance to β — lactam antibiotics in Aeromonas hydrophila isolated from rainbow trout (Oncorhynchus mykiss). International Microbiology, 7(3), 207–211.

    Google Scholar 

  32. Schwartz, T.W. Kohenen, W. Jansen B. & Obst U. (2003). Detection of antibiotic resistant bacteria and their resistance genes in wastewater, surface water and drinking water biofilms. FEMS Microbial Ecology, 43(3), 325–335. DOI: 10.1111/j.1574-6941.2003.tb01073.x

    Article  Google Scholar 

  33. Soge, O.O. Meschke, J.S. No D.B. & Roberts M.C. (2009). Characterization of methicillin-resistant and methicillin-resistant coagulase-negative Staphylococcus spp. isolated from US West Coast public marine beaches. Journal of Antimicrobial Chemotheraphy, 64(6), 1148–1155. DOI: 10.1093/jac/dkp368

    Article  Google Scholar 

  34. Song, S.H. Park, J.S. Kwon, H.R. Kim, S.H. Kim, H.B. Chang, H.E. Park, K.U. Song J. & Kim E. Ch. (2009). Human bloodstream infection caused by Staphylococcus pettenkoferi. Journal of Medicine Microbiology, 58(2), 270–272. DOI: 10.1099/jmm.0.004697-0

    Article  Google Scholar 

  35. Stotts, S.N. Nigro, O.D. Fowler, T.L. Fujioka R.S. & Steward G.F. (2005). Virulence and antibiotic resistance gene combinations among Staphylococcus aureus isolated from coastal waters of Oahu, Hawaii. Journal of Young Investigators, 12(4), 1–8.

    Google Scholar 

  36. Torimiro, N.S. Torimiro E.A. & Fadahunsi O.D. (2005). Antibiotic resistance of clinical stains of Staphylococcus aureus among different age groups in ILE-Ife. Science Focus, 10, 1–4.

    Google Scholar 

  37. Tronajowski, J. Bigus K. & Trojanowska C. (2011). Differences of chemical components in beaches sediments with dissimilar anthropopressure. Baltic Costal Zone, 15, 109–126.

    Google Scholar 

  38. Walczak, M. & Donderski, W. (2004). Antibiotic sensitivity of neustonic bacteria in lake Jeziorak Mały. Polish Journal of Environmental Studies, 13(4), 429–434.

    Google Scholar 

  39. Wang, M.Ch. Liu, Ch.Y. Shiao A.S. & Wang T. (2005). Ear problem swimmer. Journal Chinese Medical Association, 68(8), 347–352. DOI: http://dx.doi.org/10.1016/S1726-4901(09)70174-1

    Article  Google Scholar 

  40. Webster, F.L. Thompson, B.C. Fulton, M.H. Chlestnut, D.E. van Dolach, F.R. Leight A.K. & Scott G.I. (2004). Identification of source of Escherichia coli in South Carolina estuaries uses antibiotic resistance analysis. Journal Experimental Marine Biology and Ecology, 298(2), 179–195. DOI: http://dx.doi.org/10.1016/S0022-0981(03)00358-7

    Article  Google Scholar 

  41. Werckenthin, C. Cardoso, M. Martel J.L. & Schwarz S. (2001). Antimicrobial resistance in staphylococci from animals with particular reference to bovine Staphylococcus aureus., porcine Staphylococcus hyicus and canine Staphylococcus intermedius. Veterinary Research, 32(3–4), 341–362. DOI: http://dx.doi.org/10.1051/vetres:2001129

    Article  Google Scholar 

  42. Workman, M. Nigro O.D. & Steward G.F. (2006). Identification of prophages in Hawaiian water isolates of Staphylococcus aureus. Journal of Young Investigators, 15(5), 1–8.

    Google Scholar 

  43. Wright, G.D. (2003). Mechanisms of resistance to antibiotics. Current Opinion in Chemical Biology, 7(5), 563–569. DOI: 10.1016/j.cbpa.2003.08.004

    Article  Google Scholar 

  44. Zembower, T.R. Noskin, G.A. Postelnik, M.J. Nguyen Ch. & Peterson L.R. (1998). The utility of aminoglycosides in an era of emerging drug resistance. International Journal of Antimicrobial Agents, 10(2), 95–105. DOI: http://dx.doi.org/10.1016/S0924-8579(98)00033-8

    Article  Google Scholar 

  45. Zawadzka, E. (1996). Litho — morphodynamics in the vicinity of small ports of the Polish Central Coast — In: Taussik J, Mitchel J (eds), Partnership of the Coastal Management, Samara Publishing Limited, Cardigan GB

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Piotr Perlinski.

About this article

Cite this article

Skórczewski, P., Mudryk, Z.J., Miranowicz, J. et al. Antibiotic resistance of Staphylococcus-like organisms isolated from a recreational sea beach on the southern coast of the Baltic Sea as one of the consequences of anthropogenic pressure. Ocean and Hydro 43, 41–48 (2014). https://doi.org/10.2478/s13545-014-0115-1

Download citation

Key words

  • Antibiotic resistance
  • beach
  • Staphylococcus-like