Relation between the type of wave exposure and seagrass losses (Cymodocea nodosa) in the south of Gran Canaria (Canary Islands — Spain)

Abstract

Effects of different types of wave events on Cymodocea nodosa seagrass meadows were observed and investigated by quantitative and qualitative evaluation of material washed ashore a few days after the events. The studied seagrass meadows are located on the south coast of the island of Gran Canaria (Canary Islands — Spain) and they are protected from frequent swells arriving from the North Atlantic. However, sporadic phenomena associated with winter storms occasionally hit this coastline, causing the loss of entire plants (fresh leaves with rhizomes and roots attached). An unusual type of southern swells generated in the South Atlantic also reaches the Islands in spring and summer. A clear relation was observed between the wave events (southern swells and storm waves) and the material cast ashore over the following days, with differences in composition (fresh vs. decaying leaves) depending on the type of event. After southern swells, detached portions of C. nodosa consisted mostly of decaying leaves shed after senescence. These old swells cause frictional drag with moderate oscillations over a wider range at greater depths, removing only decaying leaves from the seagrass meadows and favoring the natural clean-up process.

This is a preview of subscription content, log in to check access.

References

  1. Ackerman, J.D. & Okubo, A. (1993). Reduced mixing in a marine macrophyte canopy. Funct Ecol 7, 305–309.

    Article  Google Scholar 

  2. Airy, G.B. (1845). Tides and waves. Encyc. Metrop. Article 192 (pp. 241–396).

    Google Scholar 

  3. Balestri, E., Vallerini, F. & Lardicci, C. (2006). Qualitative and quantitative assessment of the reproductive litter from Posidonia oceanica accumulated on a sand beach following a storm. Est Coast Shelf Sci 66, 30–34.

    Article  Google Scholar 

  4. Barberá, C., Tuya, F., Boyra, A., Sanchez-Jerez, P., Blanch, I. & Haroun, R.J. (2005). Spatial variation in the estructural parameters of Cymodocea nodosa seagrass Meadows in the Canary Islands: a multiscaled approach. Bot Mar 48, 122–126.

    Article  Google Scholar 

  5. Behbehani, M.I. & Croker, R.A. (1982). Ecology of beach wrack in northern New England with special reference to Orchestia platensis. Est Coast Shelf Sci 15, 611–620.

    Article  Google Scholar 

  6. BOE (2009). Official Spanish Gazette, Order ARM/3521/2009, of 23rd December, adopting the list of marine and seaboard sites of Community importance for the Macaronesian biogeographical region in Natura 2000 Network, adopted by Decisions 2002/11/CE of the Commission, of 28th December and 2008/95/CE of the Commission, of 28th December 25th January 2008. Official Spanish Gazette. [Orden ARM/3521/2009, de 23 de diciembre, por la que se declaran zonas especiales de conservación los lugares de importancia comunitaria marinos y marítimo terrestres de la región Macaronésica de la Red Natura 2000 aprobados por las Decisiones 2002/11/CE de la Comisión, de 28 de diciembre de 2001 y 2008/95/CE de la Comisión, de 25 de enero de 2008]

    Google Scholar 

  7. Boudouresque, C.F., Bernard, G., Pergent, G., Shili, A. & Verlaque, M. (2009). Regression Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review. Bot Mar 52(5), 395–418.

    Article  Google Scholar 

  8. Bradley, K. (2009). Relative velocity of seagrass blades: Implications for wave attenuation in low-energy environments. J of Geophys Res 114, 13 pp.

    Google Scholar 

  9. Brooke, J. (2003). Wave energy conversion. (Elsevier Ocean Engineering Series). Published by Elsevier Science (2003-10-10). ISBN 10: 0080442129 / ISBN 13: 9780080442129

    Google Scholar 

  10. Bullón, F. (2003). Meteorology of the La Palma Airport. Western Canary Islands CMT. Centro de Publicaciones de la Secretaria General Técnica del Ministerio de Medio Ambiente. 31 pp. ISBN: 84-8320-225-5. NIPO: 310-03-010-X. Web: http://www.aemet.es/documentos/es/conocermas/aeronautica/meteo_lapalma_ing.pdf.

    Google Scholar 

  11. Cocozza, C., Parente, A., Zaccone, C., Mininni, C., Santamaria, P. & Miano, T. (2011). Chemical, physical and spectroscopic characterization of Posidonia oceánica (L.) Del. residues en their possible recycle. Biomass and Energy 35(2), 799–807.

    Article  Google Scholar 

  12. Davis, R.A. & Fitzgerald, D.M. (2004). Beaches and Coasts. Blackwell Publishing, Oxford, U.K. 419 pp.

    Google Scholar 

  13. De Falco, G., Simeone, S. & Baroli, M. (2008). Management of Beach-Cast Posidonia oceanica seagrass on the island of Sardina (Italy, Western Mediterranean). J of Coast Res 4, 69–75.

    Article  Google Scholar 

  14. Department of the Environment and Heritage. (2004). Assesment of the South Australian Beach-cast Seagrass and Marine Algae Fishery. Wildlife Trade and Sustainable Fisheries Branch. Guidelines for the Ecologically Sustainable Management of Fisheries. Web: http://www.environment.gov.au/coasts/fisheries/sa/seagrass/pubs/sa-seagrass-assessment.pdf. ISBN: 0 642 55023 9

    Google Scholar 

  15. Duarte, C. (2004). How can beaches be managed with respect to seagrass litter? European seagrasses: an introduction to monitoring and management. Web: http://www.seagrasses.org/handbook/european_seagrasses_high.pdf. ISBN: 87-89143-21-3. The MandMS Project (pp. 83–84).

    Google Scholar 

  16. Espino, F., Garrido, M.J., Herrera, R. & Tavío, C. (2003). Populations monitoring of threatened species [Seguimiento de poblaciones de especies amenazadas 2003] Cymodocea nodosa Gran Canaria. Dirección General del Medio Natural de la Viceconsejería de Medio Ambiente (Consejería de Medio Ambiente y Ordenación Territorial del Gobierno de Canarias) y Gesplan, SA.

    Google Scholar 

  17. Espino, F. (2004). Una metodología para el estudio de las fanerógamas marinas en Canarias. Rev Acad Canar Cienc XV(3–4), 237–256.

    Google Scholar 

  18. Espino, F., Boyra, A., Tuya & Haroun, R., 2006. Guía Visual de Especies marinas de Canarias. Depósito Legal: GC 580-2006, ISBN:84-611-2308-5

    Google Scholar 

  19. Fonseca, M.S. & Cahalan, J.A. (1992). A preliminary evaluation of wave attenuation for four species of seagrasses. Aquat Bot 27, 59–79.

    Article  Google Scholar 

  20. Fonseca, M.S. (1998). Exploring the basis of pattern expression in seagrass landscapes. Unpublished doctoral dissertation, Department of Integrative Biology, University of California, Berkeley.

    Google Scholar 

  21. Fourqurean, J.W. & Rutten, L.M. (2004). The impact of Hurricane Georges on soft-bottom, back reef communities: site- and species-specific effects in south Florida seagrass beds. Bull Mar Sci 75, 239–257.

    Google Scholar 

  22. Granata, T.C., Serra, T., Colomer, J., Casamitjana, X., Duarte, C.M. & Gacia, E. (2001). Flow and particle distributions in a nearshore seagrass meadow before and after a storm. Mar Ecol Prog Ser 218, 95–106.

    Article  Google Scholar 

  23. Hansen, J.C.R. & Reidenbach, M.A. (2011). Wave and tidally driven flows in eelgrass beds and their effect on sediment suspension. Mar Ecol Pro Ser 448, 271–287.

    Article  Google Scholar 

  24. Haroun, R., Gil-Rodríguez, M.C. & Wildpret de la Torre, W. (2003). Canary marine plants. [Plantas marinas de Canarias]. Canseco Press, Talavera. ISBN: 84-932095-9-7.

    Google Scholar 

  25. Hemminga, M.A. & Nieuwenhuize, J. (1990). Seagrass wrack-induced dune formation on a tropical coast (Banc d’Arguin, Mauritania). Est Coast Shelf Sci 31, 499–502.

    Article  Google Scholar 

  26. Infantes, E., Orfila, A., Simarro, G., Terrados, J., Luhar, M. & Nepf, H. (2012). Effect of a seagrass (Posidonia oceanica) meadow on wave propagation. Mar Ecol Prog Ser 456, 63–72.

    Article  Google Scholar 

  27. Kirkman, H. & Kendrick, G.A. (1997). Ecological significance and commercial harvesting of drifting and beach-cast macro-algae and seagrasses in Australia: a review. J Appl Phycol 9, 311–326.

    Article  Google Scholar 

  28. Koch, E.W., Sanford, L.P., Chen, S., Shafer, D.J. & Smith, J.M. (2006). Waves in seagrass systems: review and technical recommendations. Maryland University Cambridge center for Environmental Science. US Army Corps of Engineers. System-Wide Water Resources Program. Submerged Aquatic Vegetation Restoration Research Program. Web: http://el.erdc.usace.army.mil/elpubs/pdf/tr06-15.pdf.

    Google Scholar 

  29. Kotwicki, L., Weslawski, J.M., Racynska, A. & Kupiec, A. (2005). Deposition of large organic particles (macrodetritus) in a sandy beach system (Puck Bay, Baltic Sea). Oceanologia 47(2), 181–199.

    Google Scholar 

  30. Le Roux, J.L. (2008). An extension of the Airy theory for linear waves into shallow water. Coast Eng 55(4), 295–301.

    Article  Google Scholar 

  31. Marbá, N., Duarte, C., Alexandra, A. & Cabaço, S. (2004). How do seagrasses grow and spread? European seagrasses: an introduction to monitoring and management. ISBN: 87-89143-21-3. Web: http://www.seagrasses.org/handbook/european_seagrasses_high.pdf. The MandMS Project (pp. 11–18).

    Google Scholar 

  32. Mateo, M.A., Sánchez-Lizaso, J.L. & Romero, J. (2003). Posidonia oceanica ‘banquettes’: a preliminary assessment of the relevance for meadow carbon and nutrients budget. Est Coast Shelf Sci 56, 85–90.

    Article  Google Scholar 

  33. Mateo, M.A. (2010). Beach-Cast Cymodocea nodosa Along the Shore of a Semienclosed Bay: Sampling and Elements to Assess Its Ecological Implications. J Coast Res 26(2), 283–291

    Article  Google Scholar 

  34. Medina, J.R., Tintoré, J. & Duarte, C. (2001). The seagrass Posidonia oceanica and beach nourishment. [La praderas de Posidonia oceanica y la regeneración de playas]. Revista de Obras Públicas 3.409, 31–43.

    Google Scholar 

  35. Medina, R., Camus, P., Requejo, S., Luque, A., Hernández, L., Alonso, I., Hernández, A., Sánchez, I., Martín, J.A., Hernández, H., Sentís, M. & Bustos, R. (2007). Comprehensive study of the beach and dunes of Maspalomas (Gran Canaria). [Estudio Integral de la Playa y Dunas de Maspalomas (Gran Canaria)]. Chapter 6. Dirección General de Costas. Secretaría General para el Territorio y la Biodiversidad. Ministerio de Medio Ambiente.

    Google Scholar 

  36. Milchakova, N.A. (1999). On the status of seagrass communities in the Black Sea. Aquat Bot 65, 21–31.

    Article  Google Scholar 

  37. Mossbauer, M., Haller, I., Dhalke, S. & Schernewski, G. (2012). Management of stranded eelgrass and macroalgae along the German Baltic coastline. Ocean Coast Manage 57, 1–9.

    Article  Google Scholar 

  38. Ochieng, C.A. & Erftermeijer, P.L.A. (1999). Accumulation of seagrass beach cast along the Kenyan coast: a quantitative assessment. Aquat Bot 65, 221–238.

    Article  Google Scholar 

  39. Open University Course Team. (1989). Waves, Tides and Shallow-Water Processes, Pergamon Press in association with The Open University, 150 pp.

    Google Scholar 

  40. Orth, R.J., Carruthers, T.J.B., Dennison, W.C., Duarte, C.M., Fourqurean, J.W., Heck Jr., K.L., Hughes, A.R., Kendrick, G.A., Kenworthy, W.J., Olyarnik, S., Short, F.T., Waycott, M. & Williams, S.L. (2006). A Global Crisis for Seagrass Ecosystems. Bioscience 56(12), 987–996.

    Article  Google Scholar 

  41. Paul, M., Bouma, T.J. & Amos, C.L. (2012). Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current. Mar Ecol Prog Ser 444, 31–41.

    Article  Google Scholar 

  42. Portillo, E., Peñate, I. & Conde, J. (2007). Swell in the Canary Islands from the South Atlantic. The importance of incorporating the boundary condictions of the South Atlantic WAM model. [Mar de fondo en las Islas Canarias procedentes del Atlántico Sur. La importancia de incorporar las condiciones de contorno del modelo WAM al Atlántico Sur]. NT.CMT.CAOR. Ministerio de Medio Ambiente/Instituto Nacional de Meteorología. ISBN: 978-84-8320-411-5.

    Google Scholar 

  43. Portillo, E. (2008). Algae and seagrass beach cast in Gran Canaria. Characteristics, management and possible uses. [Arribazones de algas y plantas marinas en Gran Canaria. Características, gestión y posibles usos]. Instituto Tecnológico de Canarias. ISBN 978-84-691-5105-1., D.L.: GC 1183-2008, 88 pp. Web: http://mdc.ulpgc.es/cdm/ref/collection/MDC/id/85626.

    Google Scholar 

  44. Preen, A.R., Lee Long, W.J. & Coles, R.G. (1995). Flood and cyclone related loss, and partial recovery, of more than 1000 km2 of seagrass in Hervey Bay, Queensland, Australia. Aquat Bot 52, 3–17.

    Article  Google Scholar 

  45. Reyes, J. (1993). Study of the seagrass Cymodocea nodosa (Cymodoceaceae, Magnoliophyta) and its community of epiphytic in El Medano (Tenerife, Canary Islands). [Estudio de las praderas marinas de Cymodocea nodosa (Cymodoceaceae, Magnoliophyta) y su comunidad de epífitos, en El Médano (Tenerife, Islas Canarias)]. Unpublished doctoral dissertation, University of La Laguna, 424 pp.

    Google Scholar 

  46. Reyes, J., Sansón, M. & Afonso-Carrillo, J. (1995). Distribution and reproductive phenology of the seagrass Cymodocea nodosa (Ucria) Ascherson in the Canary Islands. Aquat Bot 50, 171–180.

    Article  Google Scholar 

  47. Roig, F.X. & Martín, J.A. (2005). Effects of the retreat of vegetable berms of Posidonia oceanica on beaches of the Balearic Islands: consequences of the touristic pressure. Investigaciones Geográficas, Bol Inst Geogr, UNAM, ISSN 0188-4611, 57, 40–52.

    Google Scholar 

  48. Roman, T.C. & Able, K.A. (1988). Production ecology of eelgrass (Zostera marina L.) in a cape cod salt marsh-estuarine system, Massachusetts. Aquat Bot 32, 353–363.

    Article  Google Scholar 

  49. Simeone, S. & De Falco, G. (2012). Morphology and composition of beach-cast Posidonia oceanica litter on beaches with different exposures. Geomorphology 151–152, 224–233.

    Article  Google Scholar 

  50. Spanish Meteorological Agency. (2007). Study of Tropical Storm “Delta” and its extratropical transition: weather effects in the Canaries. [Estudio de la tormenta tropical “Delta” y su transición extratropical: efectos meteorológicos en Canarias (27–29 de noviembre de 2005)]. Ministerio de Medio Ambiente/Instituto Nacional de Meteorología. ISBN: 978-84-8320-395-8.

    Google Scholar 

  51. Stratigaki, V., Manca, E., Prinos, P., Losada, I., Lara, J.L., Sclavo, M., Amos, C.L., Cáceres, I. & Sánchez-Arcilla, A. (2011). Large-scale experiments on wave propagation over Posidonia oceanica. J Hydraul Res 49(1), 31–43.

    Article  Google Scholar 

  52. Tuya, F., Martín, J. & Luque, A. (2006). Seasonal cycle of a Cymodocea nodosa seagrass meadow and of the associated ichthyofauna at Playa Dorada (Lanzarote, Canary Islands, Eastern Atlantic). Cienc Mar, 32(4), 695–704.

    Google Scholar 

  53. Tuya, F. & Haroun, R.J. (2006). Spatial patterns and response to wave exposure of shallow water algal assemblages across the Canarias Archipielago: a multi-scaled approach. Mar Ecol Prog Ser 311, 15–28.

    Article  Google Scholar 

  54. WAMDI Group. (1988). The WAM model — A third generation ocean wave prediction model. J Phys Oceanogr 18, 1775–1810.

    Article  Google Scholar 

  55. Yanes, A., Marzol, M.V. & Romero, C. (2006). Characterization of sea storm along the coast of Tenerife, the Canary Islands. J Coast Res Spec Issue 48, 124–128.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eduardo Portillo.

About this article

Cite this article

Portillo, E. Relation between the type of wave exposure and seagrass losses (Cymodocea nodosa) in the south of Gran Canaria (Canary Islands — Spain). Ocean and Hydro 43, 29–40 (2014). https://doi.org/10.2478/s13545-014-0114-2

Download citation

Key words

  • Cymodocea nodosa
  • seagrass
  • wave forces
  • swell
  • wind waves
  • storms