Sediment transport modifications induced by submerged artificial reef systems: a case study for the Gulf of Venice

Abstract

The shallow, gently sloping, sandy-silty seabed of the Venetian coast (Italy) is studded by a number of outcropping rocky systems of different size encouraging the development of peculiar zoobenthic biocenoses with considerably higher biodiversity indexes compared to neighbouring areas. In order to protect and enhance the growth of settling communities, artificial monolithic reefs were deployed close to the most important formations, providing further nesting sites and mechanical hindrance to illegal trawl fishing.

In this framework, a multi-step and multi-scale numerical modelling activity was carried out to predict the perturbations induced by the presence of artificial structures on sediment transport over the outcroppings and their implications on turbidity and water quality. After having characterized wave and current circulation climate at the sub-basin scale over a reference year, a set of small scale simulations was carried out to describe the effects of a single monolith under different geometries and hydrodynamic forcings, encompassing the conditions likely occurring at the study sites. A dedicated tool was then developed to compose the information contained in the small-scale database into realistic deployment configurations, and applied in four protected outcroppings identified as test sites. With reference to these cases, under current meteomarine climate the application highlighted a small and localised increase in suspended sediment concentration, suggesting that the implemented deployment strategy is not likely to produce harmful effects on turbidity close to the outcroppings.

In a broader context, the activity is oriented at the tuning of a flexible instrument for supporting the decision-making process in benthic environments of outstanding environmental relevance, especially in the Integrated Coastal Zone Management or Maritime Spatial Planning applications. The dissemination of sub-basin scale modelling results via the THREDDS Data Server, together with an user-friendly software for composing single-monolith runs and a graphical interface for exploring the available data, significantly improves the quantitative information collection and sharing among scientists, stakeholders and policy-makers.

This is a preview of subscription content, log in to check access.

References

  1. Armanini, A., & Di Silvio, G., 1988. A one-dimensional model for the transport of a sediment mixture in non-equilibrium conditions. Journal of Hydraulic Research, 3(26), 275–292.

    Article  Google Scholar 

  2. Benetazzo, A., Carniel, S., Sclavo M. & Bergamasco, A., 2013. Wave-current interaction: effect on the wave field in a semi-enclosed basin. Ocean Modelling. 70, 152–165.

    Article  Google Scholar 

  3. Bergamasco, A., Benetazzo, A., Carniel, S., Falcieri, F., Minuzzo, T., Signell, R., & Sclavo, M., 2012. Knowledge discovery in large model datasets in the marine environment: the THREDDS Data Server example. Advances in Oceanography and Limnology. 3(1), 41–50. DOI: 10.1080/19475721.2012.669637

    Article  Google Scholar 

  4. Bever, A. J., Harris, K. C., Sherwood, C. R., & Signell, R. P., 2009. Deposition and flux of sediment from the Po River, Italy: an idealized and wintertime numerical modeling study. Marine Geology. 260, 69–80.

    Article  Google Scholar 

  5. Bignami, F., Sciarra, R., Carniel, S., & Santoleri, R., 2007. Variability of Adriatic Sea coastal turbid waters from SeaWiFS imagery. Journal of Geophysical Research — Oceans. 112, C03S10. DOI: 10.1029/2006JC003518

    Google Scholar 

  6. Booij, N., Ris, R.C. & Holthuijsen, L.H., 1999. A third-generation wave model for coastal regions. Model description and validation. Journal of Geophysical Research. 104(C4), 7649–7666.

    Article  Google Scholar 

  7. Carniel, S., Warner, J.C., Chiggiato, J. & Sclavo, M., 2009. Investigating the impact of surface wave breaking on modelling the trajectories of drifters in the Northern Adriatic Sea during a wind-storm event. Ocean Modelling. 30, 225–239. DOI: 10.1016/j.ocemod.2009.07.001

    Article  Google Scholar 

  8. Carniel S., Sclavo M. & R. Archetti, 2011. Towards validating a last generation, integrated wave-current-sediment numerical model in coastal regions using video measurements. Oceanological and Hydrobiological Studies. 40(4), 11–20. DOI: 10.2478/s13545-011-0036-1.

    Article  Google Scholar 

  9. Casellato, S., Masiero, L., Sichirollo, E., & Soresi, S., 2007. Hidden secrets of the Northern Adriatic: the “Tegnùe”, peculiar reefs. Central European Journal of Biology. 2(1), 122–136.

    Article  Google Scholar 

  10. Casellato, S., & Stefanon, A., 2008. Coralligenous habitat in the northern Adriatic Sea: an overview. Marine Ecology. 29, 321–341. DOI: 10.1111/j.1439-0485.2008.00236.x.

    Article  Google Scholar 

  11. Cavaleri, L., Bertotti, L., & Lionello, P., 1989. Wind-waves evaluation in the Adriatic and Mediterranean Seas. International Journal for Numerical Methods in Engineering. 27, 57–69. DOI: 10.1002/nme.1620270106.

    Article  Google Scholar 

  12. Ciavola, P., Tondello, M., Carniel, S., & Sclavo, M., 2012. Artificial deviation of a small inlet (Bevano, Northern Italy): prediction of future evolution and planning of management strategies using open-source community coastal models. Coastal Engineering Proceedings. 1(33), management.57. doi:10.9753/icce.v33.management.57

    Google Scholar 

  13. Conti, A., Stefanon, A., & Zuppi, G.M., 2002. Gas seeps and rock formation in the northern Adriatic Sea. Continental Shelf Research. 22, 2333–2344.

    Article  Google Scholar 

  14. DHI, 2011. MIKE 21 & MIKE 3 Flow Model FM — Mud Transport Module, Scientific documentation. Hørsholm, Denmark.

    Google Scholar 

  15. Dykes, J.D., Wang, D.W., & Book, J.W., 2009. An evaluation of a high-resolution operational wave forecasting system in the Adriatic Sea. Journal of Marine Systems. 78, S255–S271.

    Article  Google Scholar 

  16. Goff, J.A., Jenkins, C., & Calder, B., 2006. Maximum a posteriori resampling of noisy, spatially correlated data. Geochem. Geophys. Geosyst. 7, Q08003, doi:10.1029/2006/GC001297.

    Article  Google Scholar 

  17. Haidvogel, D.B., Arango, H.G., Budgell, W.P., Cornuelle, B.D., Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer,.R., Hermann, A.J., Lanerolle, L., Levin, J., McWilliams, J.C., Miller, A.J., Moore, A.M., Powell, T.M., Shchepetkin, A.F., Sherwood, C.R., Signell, R.P., Warner, J.C., & Wilkin, J., 2008. Regional ocean forecasting in terrain-following coordinates: model formulation and skill assessment. Journal of Computational Physics. 227, 3595–3624.

    Article  Google Scholar 

  18. Harris, C. K., Sherwood, C. R., Signell, R. P., Bever, A. J., & Warner, J. C., 2008. Sediment dispersal in the nothwestern Adriatic Sea. Journal of Geophysical Research. 113, doi:10.1029/2006JC003868.

    Google Scholar 

  19. Metcalfe Coulson, J., & Richardson, J., 1955. Chemical Engineering / 2, Unit operations. London: Pergamon Press.

    Google Scholar 

  20. Newton, R.S., & Stefanon, A., 1975. The “Tegnue de Ciosa” area: patch reefs in the northern Adriatic Sea. Marine Geology. 19, M27–M33.

    Article  Google Scholar 

  21. Nichols, B.D., & Hirt, C.W., 1973. Calculating Three-Dimensional Free Surface Flows in the Vicinity of Submerged and Exposed Structures. Journal of Computational Physics. 12, 234–246.

    Article  Google Scholar 

  22. Partheniades, E., 1965. Erosion and deposition of cohesive soils. Journal of the Hydraulics Division Proceedings of the ASCE. 91(HYI), 105–139.

    Google Scholar 

  23. Raicich, F., 1994. Note on the flow rates of the Adriatic rivers. Tech. Rep. 561 RF 02/94, CNR Ist. Sper. Talassogr. Trieste, Italy, 8pp.

    Google Scholar 

  24. Rampazzo, F., Berto, D., Giani, M., Brigolin, D., Covelli, S., Cacciatore, F., Boscolo Brusà, R., Bellucci, L.G., & Pastres, R., 2013. Impact of mussel farming on sedimentary geochemical properties of a Northern Adriatic area influenced by freshwater inflows. Estuarine, Coastal and Shelf Science. 129, 49–58.

    Article  Google Scholar 

  25. Russo, A., Carniel, S., Sclavo, M. & Krzelj, M., 2012. Climatology of the Northern-Central Adriatic Sea, Modern Climatology, Dr Shih-Yu Wang (Ed.), ISBN: 978-953-51-0095-9, InTech, DOI: 10.5772/34693. Available from: http://www.intechopen.com/books/modern-climatology/climatology-of-the-northern-central-adriatic-sea

  26. Santoro, F., Tonino, M., Torresan, S., Critto, A., & Marcomini, A., 2013. Involve to improve: a participatory approach for a Decision Support System for coastal climate change impacts assessment. The North Adriatic case. Ocean and Coastal Management. 78, 101–111.

    Article  Google Scholar 

  27. Sclavo, M., Benetazzo, A., Carniel, S., Bergamasco, A., Falcieri, F.M., & Bonaldo, D., 2013. Wave-current interaction effect on sediment dispersal in a shallow semi-enclosed basin. Journal of Coastal Research. 65, 1587–1592, ISSN 0749-0208

    Google Scholar 

  28. Shields, A., 1936. Awendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitt. Preuss. Versuchsanst. Wasserbau Schiffbau (26).

    Google Scholar 

  29. Signell, R.P., Carniel, S., Chiggiato, J., Janekovic, I., Pullen, J., & Sherwood, C., 2008. Collaboration tools and techniques for large model datasets. Journal of Marine Systems. 65, 154–161. DOI: 10.1016/j.jmarsys.2007.02.013.

    Article  Google Scholar 

  30. Steppeler, J., Doms, G., Schattler, U., Bitzer, H.W., Gassmann, A., Damrath, U., & Gregoric, G., 2003. Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorology and Atmospheric Physics. 82, 75–96.

    Article  Google Scholar 

  31. Stive, M.J.F., Wang, Z.B., Capobianco, M., Ruol, P., & Buijsman, M.C. 1998. Morphodynamics of a tidal lagoon and the adjacent coast. in: Dronkers, J. et al. (Ed.). Physics of estuaries and coastal seas: proceedings of the 8th International Biennial Conference on physics of estuaries and coastal seas, The Hague, Netherlands 9–12 September 1996, 397–407, AA Balkema: Rotterdam. ISBN 90-5410-965-3. XIV, 431 pp.

    Google Scholar 

  32. van Ledden, M., van Kesteren, W., & Winterwerp, J., 2004. A conceptual framework for the erosion behaviour of sand-mud mixtures. Continental Shelf Research. 24, 1–11.

    Article  Google Scholar 

  33. Wang, Y., Yu, Q., & Gao, S., 2011. Relationship between bed shear stress and suspended sediment concentration: annular flume experiments. International Journal of Sediment Research. 26(4), 513–523.

    Article  Google Scholar 

  34. Warner, J.C., Armstrong, B., He, & R.Y., Zambon, J.B., 2010. Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. Ocean Modelling. 35, 230–244.

    Article  Google Scholar 

  35. Whitmarsh, D., Neves Santos, M., Ramos, J., & Monteiro, C.C., 2008. Marine habitat modification through artificial reefs off the Algarve (southern Portugal): an economic analysis of the fisheries and the prospects for management. Ocean and Coastal Management. 511, 463–468.

    Article  Google Scholar 

  36. Zhao, M., Cheng, L., & Zang, Z., 2010. Experimental and numerical investigation of local scour around a submerged vertical circular cylinder in steady currents. Coastal Engineering. 57, 709–721.

    Article  Google Scholar 

  37. Zhao, M., Zhu, X., Cheng, L., & Teng., B., 2012. Experimental study of local scour around subsea caissons in steady currents. Coastal Engineering. 60, 30–40.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sandro Carniel.

About this article

Cite this article

Bonaldo, D., Benetazzo, A., Bergamasco, A. et al. Sediment transport modifications induced by submerged artificial reef systems: a case study for the Gulf of Venice. Ocean and Hydro 43, 7–20 (2014). https://doi.org/10.2478/s13545-014-0112-4

Download citation

Key words

  • Adriatic Sea
  • Numerical Modelling
  • Artificial Reefs
  • Coastal Circulation
  • Tegnùe