Oceanological and Hydrobiological Studies

, Volume 42, Issue 4, pp 358–378 | Cite as

Cyanobacteria and cyanotoxins in Polish freshwater bodies

  • Justyna Kobos
  • Agata Błaszczyk
  • Natalia Hohlfeld
  • Anna Toruńska-Sitarz
  • Anna Krakowiak
  • Agnieszka Hebel
  • Katarzyna Sutryk
  • Magdalena Grabowska
  • Magdalena Toporowska
  • Mikołaj Kokociński
  • Beata Messyasz
  • Andrzej Rybak
  • Agnieszka Napiórkowska-Krzebietke
  • Lidia Nawrocka
  • Aleksandra Pełechata
  • Agnieszka Budzyńska
  • Paweł Zagajewski
  • Hanna Mazur-Marzec
Original Research Paper

Abstract

In this work, the authors examined the presence of cyanobacteria and cyanotoxins in 21 samples collected from fresh water bodies located in 5 provinces in Poland: Lublin (2), Podlasie (1), Pomerania (6), Warmia-Masuria (1) and Wielkopolska (11). In addition, to determine the general pattern of geographical distribution, frequency of cyanobacteria occurrence, and cyanotoxins production, the published data from 238 fresh water bodies in Poland were reviewed. On the basis of these collected results, we concluded that Planktothrix, Aphanizomenon, Microcystis and Dolichospermum were dominant. The general pattern in geographical distribution of the identified cyanobacterial genera was typical of other eutrophic waters in Europe. The production of cyanotoxins was revealed in 18 (86%) of the 21 samples analyzed in the present work and in 74 (75%) of the 98 total water bodies for which the presence of toxins had been examined. Among the 24 detected microcystin variants, [Asp3]MC-RR was most common. These results can be verified when more data from the less explored water bodies in the southern and eastern parts of Poland are available.

Key words

cyanobacterial blooms cyanotoxins freshwater cyanobacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Tebrineh, J., Mihali T.K., Pomati F. & Neilan B.A. (2010). Detection of saxitoxin-producing cyanobacteria and Anab aena circinalis in environmental water blooms by quantitative PCR. Appl. Environ. Microbiol, 76, 7836–7842. DOI: 10.1128/AEM.00174-10Google Scholar
  2. Alikas, K., Kangro K., Reinart A. (2010). Detecting cyanobacterial blooms in large North European lakes using the Maximum Chlorophyll Index. Oceanologia 52(2), 237–257. DOI: 10.5697/oc.52-2.237.Google Scholar
  3. Aráoz, E., Mologó J., & de Marsac N.T. (2010). Neurotoxic cyanobacterial toxins. Toxicon 56, 813–828. DOI: 1016/j.toxicon.2009.07.036.Google Scholar
  4. Ballot, A., Fastner J., Lentz M. & Wiedner C. (2010). First report of anatoxin-a-producing cyanobacterium Aphanizomenon issatschenkoi in northeastern Germany. Toxicon 56(6), 964–971. DOI: 1016/j.toxicon.2010.06.021.Google Scholar
  5. Błaszczyk, A. (2011). Cyanobacterial neurotoxins in the environment of the Baltic Sea and the lakes of Pomerania Province, Unpublished doctoral dissertation, University of Gdańsk, Gdynia, Poland. (in Polish with Engl. summ.).Google Scholar
  6. Bober, B., Lechowski Z. & Bialczyk J. (2011). Determination of some cyanopeptides synthesized by Woronichinia naegeliana (Chroococcales, Cyanophyceae). Phycol. Res, 59, 286–294. DOI: 10.1111/j.1440-1835.2011.00628.x.Google Scholar
  7. Bucka, H. & Żurek R. (1992). Trophic relations between phyto- and zooplankton in a field experiment in the aspect of the formation and decline of water blooms. Acta Hydrobiol., 34, 139–155. YADDA: bwmeta1.element.agro-article-180bebdf-c43a-4e1f-8994-ea04e54261c1.Google Scholar
  8. Bucka, H. & Wilk-Woźniak E. (1999). Cyanobacteria responsible for planktic water blooms in reservoirs in southern Poland. Algological Studies 94, 105–113.Google Scholar
  9. Bucka, H. & Wilk-Woźniak E. (2005a). A contribution to the knowledge of some potentially toxic cyanobacteria species forming blooms in water bodies — chosen examples. Oceanol. Hydrobiol. Stud, 34(3): 43–53. YADDA: bwmeta1.element.agro-article-fbc54748-7909-408a-a2eb-35e8f66eb8b6.Google Scholar
  10. Bucka, H. & Wilk-Woźniak E. (2005b). Ecological aspects of selected principial phytoplankton taxa in Lake Piaseczno. Oceanol. Hydrobiol. Stud, 34(2), 79–94. YADDA: bwmeta1.element.baztech-article-BUS5-0012-0031.Google Scholar
  11. Burchardt, L. (1998). The response of Aphanizomenon flos-aquae (L.) Ralfs to changes of environmental conditions. Oceanol. Stud, 1, 9–14. YADDA: bwmeta1.element.baztech-article-BUS8-0025-0018.Google Scholar
  12. Burchardt, L., Messyasz B. & Stępniak A. (2006). Diversity of phytoplankton community in Borusa and Grundela ponds. Teka Kom. Ochr. Kszt. Środ. Przyr., 3, 35–40. YADDA: bwmeta1.element.agro-525f0d10-d219-44d8-a8ca-9549a562932c.Google Scholar
  13. Burchardt, L., Marshall H. G., Kokociński M. & Owsianny P. M. (2007). Blooms of Aphanizomenon flos-aquae associated with historical trophic changes occurring in Lake Świętokrzyskie, Poland. Oceanol. Hydrobiol. Stud., 46(Suppl. 1), 261–266. YADDA: bwmeta1.element.agro-article-4552a2d4-ceb6-4dcf-ab8b-6b1649d81290.Google Scholar
  14. Budzyńska, A., Gołdyn R., Zagajewski P., Dondajewska R. & Kowalewska-Madura K. (2009). The dynamics of a Planktothrix agardhii population in a shallow dimictic lake. Oceanol. Hydrobiol. Stud, 38(2), 7–12.Google Scholar
  15. Cadel-Six, S., Peyraud-Thomas C., Brient L., Tandeau de Marsac N., Rippka R. & Méjean A. (2007). Different genotypes of anatoxin-producing cyanobacteria co-exist in the Tarn River, France. Appl. Environ. Microbiol, 73(23), 7605–7614. DOI: 10.1128/AEM.01225-07.Google Scholar
  16. Carey, C.C., Haney J.F. & Cottingham K.L. (2007). First report of microcystin-LR in the cyanobacterium Gloeotrichia echinulata. Environ Toxicol, 22(3),337–9. DOI: 1002/tox.20245.Google Scholar
  17. Celewicz, S., Messyasz B. & Burchardt L. (2001). Struktura zbiorowisk fitoplanktonu w strefie szuwaru i pelagialu w Jeziorze Budzynskim. Rocz. AR Pozn. CCCXXXIV, Bot, 4, 3–11 (in Polish with Engl. summ.). YADDA: bwmeta1.element.agro-article-217ce7bf-e47a-4c67-ad92-7d21f6697fd7.Google Scholar
  18. Cerasino, L. & Salmaso N. (2012). Diversity and distribution of cyanobacterial toxins in the Italian subalpine lacustrine district. Oceanol.Hydrobiol. St, 41(3), 54–63. DOI: 10.2478/s13545-012-0028-9.Google Scholar
  19. Celewicz-Gołdyn, S. (2005). Pelagic phytoplankton in four basins of the Rosnowskie Duże Lake in the Wielkopolska National Park. Rocz. AR Pozn. CCCLXXII, Bot.-Stec, 8, 11–25. YADDA: bwmeta1.element.agro-article-202e0614-0682-4eb4-af55-be589629759f.Google Scholar
  20. Celewicz-Gołdyn, S. (2006). Phycoflora in the basin of the Rosnowskie Duże lake exposed to anthropopressure. Rocz. AR Pozn. CCCLXXVIII, Bot.-Stec, 10, 23–35. http://www.up.poznan.pl/steciana/wp-content/uploads/2013/05/10Celewi2.pdf Google Scholar
  21. Christiansen, G., Fastner J., Erhard M., Börner T. & Dittmann E. (2003). Microcystin biosynthesis in Planktothrix: genes, evolution, and manipulation. J. Bacteriol, 185, 564–572. DOI: 1128/JB.185.2.564-572.2003.Google Scholar
  22. Cox, P.A., Banack S.A., Murch S.J., Rasmussen U., Tien G., Bidigare R.R., Metcalf J.S., Morrison L.F., Codd G.A. & Bergman B. (2005). Diverse taxa of cyanobacteria produce BMAA, a neurotoxic amino acid. Proc. Natl. Acad. Sci, (USA) 102, 5074–5078. DOI: 10.1073_pnas.0501526102.Google Scholar
  23. Cronberg, G., Annadotter H. & Lawton L.A. (1999). The occurrence of toxic blue-green algae in Lake Ringsjon, southern Sweden, despite nutrient reduction and fish biomanipulation. Hydrobiologia 404,123–129. DOI: 10.1023/A:1003780731471.Google Scholar
  24. Czerwik-Marcinkowska, J. & Uher B. (2011). Cyanophytes on limestone rocks in the Szopczański Gorge (Pieniny Mountains) — their ecomorphology and ultrastructure. Acta Soc. Bot. Pol, 80(3), 205–209. DOI: 5586/asbp.2011.013.Google Scholar
  25. Dittmann, E., Fewer D.P. & Neilan B.A. (2012). Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol. Rev, 37, 23–43. DOI: 1111/1574-6976.12000.Google Scholar
  26. Domingos, P., Rubim T. K., Molica R. J. R., Azevedo S. M. F. O. & Carmichael W. W. (1999). First report of microcystin production by picoplanktonic cyanobacteria isolated from a northeast Brazilian drinking water supply. Environ. Toxicol, 14, 31–35. DOI: 10.1002/(SICI)1522-7278(199902).Google Scholar
  27. Edler, L. (1979). Phytoplankton and chlorophyll: recommendations on methods for marine biological studies in the Baltic Sea. Baltic Marine Biologists Publication 5, 1–38.Google Scholar
  28. Falconer, I. R. (2005). Cyanobacterial toxins of drinking water supplies, CRC Press, London.Google Scholar
  29. Fastner, J., Neumann U., Wirsing B., Weckesser J., Wiedner C., Nixdorf B. & Chorus I. (1999). Microcystins (Hepatotoxic heptapeptides) in German fresh water bodies. Environ. Toxicol, 14, 13–22. DOI: 1002/(SICI)1522-7278(199902)14.Google Scholar
  30. Fastner, J., Rücker J., Stüker A., Preußel K., Nixdof B., Chorus I., Köhler A. & Wiedner C. (2007). Occurence of the cyanobacterial toxin cylindrospermopsin in northeast Germany. Environ. Toxicol, 22, 26–32. DOI: 1002/tox.20230.Google Scholar
  31. Ferriera, F. M. B., Soler J. M. F., Fidalgo M. L. & Fernandez-Vila P. (2001). PSP toxins from Aphanizomenon flos-aquae (cyanobacteria) collected in the Crestuma-Lever reservoir (Douro river, northern Portugal). Toxicon 39, 737–761. DOI: 10.1016/S0041-0101(00)00114-8.Google Scholar
  32. De Figueiredo, D.R., Alves A., Pereira M.J. & Correia A. (2010). Molecular characterization of bloomforming Aphanizomenon strains isolated from Vela Lake (Western Central Portugal). J. Plankton Res, 32(2), 239–252. DOI: 10.1093/plankt/fbp111.Google Scholar
  33. Fiore, M. F., Genuario D. B., da Silva C. S. P., Shishido T. K., Moraes L. A. B., Neto R. C. & Silva-Stenico M. E. (2009). Microcystin production by a freshwater spring cyanobacterium of the genus Fischerella. Toxicon, 53, 754–761. DOI: 1016/j.toxicon.2009.02.010.Google Scholar
  34. Galicka, W., Lesiak T. & Rakowska B. (1998). Dynamics of blue-green algae development in Sulejów Dam Reservoir. Oceanol. Stud, 1, 21–26.Google Scholar
  35. Gąbka, M., Owsianny P.M. & Sobczyński T. (2004). Acidic lakes in the Wielkopolska region — physico-chemical properties of water, bottom sediments and the aquatic micro- and macrovegetation. Limnol. Rev, 4, 81–88. http://www.ptlim.pl/lr2004/pdf/gabka.pdf Google Scholar
  36. Gągała I., Izydorczyk K., Skowron A., Kamecka-Plaskota D., Stefaniak K., Kokociński M., Mankiewicz-Boczek J. (2010). Appearance of toxigenic cyanobacteria in two Polish lakes dominatem by Microcystis aeruginosa and Planktothrix agardhii and environmental factors influence. Ecohydrol. Hydrobiol, 10(1), 25–34. DOI: 10.2478/v10104-009-0045-5.Google Scholar
  37. Głowacka, J., Szefel-Markowska M., Waleron M., Łojkowska E. & Waleron K. (2011). Detection and identyfication of potentially toxic cyanobacteria in Polish water bodies. Acta Biochim. Pol, 58(3), 321–333. http://www.actabp.pl/pdf/3_2011/321.pdf Google Scholar
  38. Gołdyn, R. & Messyasz B. (2008). Stan jakości wód i możliwości rekultywacji Jeziora Durowskiego, Monograph University of im. Adama Mickiewicza in Poznań, pp. 48 (in Polish)Google Scholar
  39. Górniak, A., Zieliński P., Jekatierynczuk-Rudczyk E., Grabowska M. & Suchowolec T. (2002). The role of dissolved organic carbon in the shallow lowland reservoir ecosystem. Acta Hydroch. Hydrob, 30, 179–189. http://onlinelibrary.wiley.com/doi/10.1002/aheh.200390001/pdf Google Scholar
  40. Górniak, A., Zieliński P., Jekatierynczuk-Rudczyk E., Grabowska M., Suchowolec T. & Smakulska J. (2006). Results of biomanipulation of a humic reservoir after four years of study. Verh. Internat. Verein Limnol, 29, 2059–2062. http://www.ibiologia.unam.mx/pdf/directorio/z/restauracion/biomanipulation/biomanipulation.pdf Google Scholar
  41. Grabowska, M. (1998). Blooms of Cyanophyta in Siemianówka Dam Reservoir in the first years after filling. Oceanol. Stud, 1, 27–31.Google Scholar
  42. Grabowska, M. (2005). Cyanoprokaryota blooms in the polyhumic Siemianówka Dam Reservoir in 1992–2003. Oceanol. Hydrobiol. Stud, 34(1), 73–85. http://biol-chem.uwb.edu.pl/IP/POL/BIOLOGIA/pdf/grabowska2005.pdf Google Scholar
  43. Grabowska, M. (2012). The role of a eutrophic lowland reservoir in shaping the composition of river phytoplankton. Ecohydrol. Hydrobiol, 12(3), 231–242. DOI: 10.2478/v10104-012-0016-0.Google Scholar
  44. Grabowska, M., Górniak A., Jekatierynczuk-Rudczyk E. & Zieliński P. (2003). The influence of hydrology and water quality on phytoplankton community composition and biomass in a humoeutrophic reservoir, Siemianówka reservoir (Poland). Int. J. Ecohydrol. Hydrobiol, 3(2), 185–196. YADDA: bwmeta1.element.agro-article-9c7c30a7-8994-4938-b5b1-2f4f8fcdd0e2.Google Scholar
  45. Grabowska, M., Konecka U. & Górniak A. (2006). Summer phytoplankton of lakes in Suwałki Landscape Park. Polish J. Environ. Study, 15(5d), 553–556. http://biol-chem.uwb.edu.pl/IP/POL/BIOLOGIA/pdf/zieletal2006.pdf Google Scholar
  46. Grabowska, M. & Pawlik-Skowrońska B. (2008). Replacement of Chroococcales and Nostocales by Oscillatoriales caused a significant increase in microcystin concentrations in a dam reservoir. Oceanol. Hydrobiol. Stud., 37(4), 23–33. YADDA: bwmeta1.element.baztech-article-BUS5-0015-0025.Google Scholar
  47. Grabowska, M. & Mazur-Marzec H. (2011). The effect of cyanobacterial blooms in the Siemianówka Dam Reservoir on the phytoplankton structure in the Narew River. Oceanol. Hydrobiol. Stud., 40(1), 19–26. DOI: 10.2478/s13545-011-0003-x.Google Scholar
  48. Grabowska, M., Górniak A. & Krawczuk M. (2013). Summer phytoplankton in selected lakes of the East Suwałki Lakeland in relation to the chemical water parameters. Limnol. Rev, 13(1), 21–29.Google Scholar
  49. Hesse, K. & Kohl J.G. (2001). Effects of light and nutrient supply on growth and microcystin content of different strains of Microcystis aeruginosa. In I. Chorus (Ed.) Cyanotoxins. Occurrence, causes, consequences (pp. 104–115). Springer, Berlin.Google Scholar
  50. Hoffmann, L. (1999). Marine cyanobacteria in tropical regions: diversity and ecology. Eur. J. Phycol, 34, 371–379.Google Scholar
  51. Izydorczyk, K., Tarczyńska M., Jurczak T., Mrowczyński J. & Zalewski M. (2005). Measurement of phycocyanin fluorescence as an online early warning system for cyanobacteria in reservoir intake water. Environ. Toxicol, 20, 425–430. DOI: 1002/tox.20128.Google Scholar
  52. Izydorczyk, K., Jurczak T., Wojtal-Frankiewicz A., Skowron A., Mankiewicz-Boczek J. & Tarczyńska M. (2008). Influence of abiotic and biotic factors on microcystin content in Microcystis aeruginosa cells in a eutrophic temperate reservoir. J. Plankton Res, 30(4), 393–400. DOI: 10.1093/plankt/fbn006.Google Scholar
  53. Jacobsen, B.A. (1994). Bloom formation of Gloeotrichia echinulata and Aphanizomenon flos-aquae in a shallow, eutrophic, Danish lake. Hydrobiologia 289, 193–197. DOI: 10.1007/BF00007420.Google Scholar
  54. Jacquet, S., Briand J.F., Leboulanger C., Avois-Jacquet C., Oberhaus L., Tassin B., Vinçon-Leite B., Paolini G., Druart J.D., Anneville O. & Humbert J.H. (2005). The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae 4: 651–642. DOI: 1016/j.hal.2003.12.006.Google Scholar
  55. Jekatierynczuk-Rudczyk, E., Grabowska M., Ejsmont-Karabin J. & Karpowicz M. (2012). Assessment of trophic state of four lakes in the Suwałki Landscape Park (NE Poland) based on the summer phyto- and zooplankton in comparison with some physicochemical parameters. In K. Wołowski, I. Kaczmarska, J. Ehrman & A. Z. Wojtal (Eds.) Phycological Reports: Current advances in algal taxonomy and its applications: phylogenetic, ecological and applied perspective, (pp. 205–225). Instytut Botaniki im. W. Szafera, Kraków.Google Scholar
  56. Jonasson, S., Eriksson J., Berntzon L., Spácil Z., Ilag LL., Ronnevi LO., Rasmussen U. & Bergman B. (2010). Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure. Proc. Natl. Acad. Sci, (USA) 107(20) 9252–9257. DOI: 10.1073/pnas.0914417107.Google Scholar
  57. Jurczak, T., Tarczyńska M., Karlsson K. & Meriluoto J. (2004). Characterization and Diversity of Cyanobacterial Hepatotoxins (Microcystins) in Blooms from Polish Freshwaters Identified by Liquid Chromatography-Electrospray Ionisation Mass Spectrometry. Chromatographia, 59(9–10), 571–578. DOI: 10.1365/s10337-004-0279-8.Google Scholar
  58. Jurczak, T., Tarczyńska M., Izydorczyk K., Mankiewicz J., Zalewski M. & Meriluoto J. (2005). Elimination of microcystins by water treatment processes — examples from Sulejow Reservoir, Poland. Water Res, 39, 2395–2406. DOI: 10.1016/j.watres.2005.04.031.Google Scholar
  59. Kabziński, A. K. M., Juszczak R. Miękoś E., Tarczyńska M., Sivonen K. & Rapala J. (2000). The first report about the presence of cyanobacterial toxins in Polish lakes. Polish J. Environ. Stud, 9(3), 171–178. http://www.pjoes.com/pdf/9.3/171-178.pdf Google Scholar
  60. Kalinowska, R., Pawlik-Skowronska B. & Skowronski T. (2012). Hazardous change in the species composition of cyanobacterial assemblage in the autrophic dam reservoir in Lublin (E. Poland). 31st International Conference of the Polish Phycological Society. Olsztyn, 17-20th May, p. 44.Google Scholar
  61. Kardinaal, W. E. A. (2007). Who’s bad? Molecular identification reveals seasonal dynamics of toxic and non-toxic freshwater cyanobacteria, Universiteit Amsterdam, Instituut Biodiversiteit en Ecosysteemdynamica (IBED). ISBN 978-90-76894-78-2.Google Scholar
  62. Karlsson-Elfgren, I., Hyenstrand P. & Riydin E. (2005). Pelagic growth and colony division of Gloeotrichia echinulata in Lake Erken. J. Plankton. Res, 27(2), 145–151. DOI: 10.1093/plankt/fbh165.Google Scholar
  63. Kobos, J., Mazur-Marzec H., Dittmer M., Witek B. & Pliński M. (2005). Toxic cyanobacterial blooms in the Kociewskie Lasek (Northern Poland). Oceanol. Hydrobiol. Stud, 34(Suppl. 3), 77–84.Google Scholar
  64. Kobos, J. (2007). Characterisctics of toxic and potentially toxic cyanobacteria occurring in the Gulf of Gdańsk and selected lakes from the Radunia River drainage, Unpublished doctoral dissertation, University of Gdańsk, Gdynia, Poland. (in Polish with Engl. summ.).Google Scholar
  65. Kokociński, M., Dziga D., Spoof L., Stefaniak K., Jurczak T., Mankiewicz-Boczek J. & Meriluoto J. (2009). First report of the cyanobacterial toxin cylindrospermopsin in the shallow, eutrophic lakes of western Poland. Chemosphere, 74, 669–675. DOI: 1016/j.chemosphere.2008.10.027.Google Scholar
  66. Kokociński, M., Stefaniak K., Mankiewicz-Boczek J., Izydorczyk K. & Soininen J. (2010). The ecology of the invasive cyanobacterium Cylindrospermopsis raciborskiii (Nostocales, Cyanophyta) in two hypereutrophic lakes dominated by Planktothrix agardhii (Oscillatoriales, Cyanophyta). Eur. J. Phycol, 45(4), 365–374. DOI: 1080/09670262.2010.492916.Google Scholar
  67. Kokociński, M. & Soininen J. (2012). Environmental factors related to the occurrence of Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) at the north-eastern limit of its geographical range. Eur. J. Phycol, 47(1), 12–21. DOI: 1080/09670262.2011.645216.Google Scholar
  68. Kokociński, M., Mankiewicz-Boczek J., Jurczak T., Spoof L., Meriluoto J., Rejmonczyk E., Hautala H., Vehniäinen M., Pawełczyk J. & Soininen J. (2013). Aphanizomenon gracile (Nostocales), a cylindrospermopsinproducing cyanobacterium in Polish lakes. Environ. Sci. Pollut. Res., DOI 10.1007/s11356-012-1426-7, published on line 02 February 2013.Google Scholar
  69. Komárek, J. (2010). Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 639: 245–259. DOI 10.1007/s10750-009-0031-3.Google Scholar
  70. Komárek, J. & Anagnostidis K. (1999). Band 19/1. Cyanoprocaryota, 1. Teil: Chroococcales; Süβwasserflora von Mitteleuropa; Gustav Fisher Verlag Jena, Germany, pp. 548, ISBN 3-437-35408-6.Google Scholar
  71. Komárek, J. & Anagnostidis K. (2005) Band 19/2. Cyanoprocaryota, 2. Teil: Oscillatoriales; Süβwasserflora von Mitteleuropa; ELSEVIER, Italy, pp. 759, ISBN 3-8274-0919-5.Google Scholar
  72. Komárek, J. & Komárkova J. (2006). Diversity of Aphanizomenon-like cyanobacteria. Czech. Phycol. Olomouc, 6, 1–32. http://fottea.czechphycology.cz/_contents/CP6-2006-01.pdf Google Scholar
  73. Komarzewska, K. & Głogowska B. (2005). Blooming of Aphanizomenon flos-aquae in the urban pond. Oceanol. Hydrobiol. Stud., 34(3), 105–113.Google Scholar
  74. Kozak, A. (2005). Seasonal Changes Occurring Over Four Years in a Reservoir’s Phytoplankton Composition. Polish J. Environ. Stud, 14(4), 451–465Google Scholar
  75. Kozak, A. (2006). Phytoplankton community structure in a dam reservoir in Poznań. Teka Kom. Ochr. Kszt. Środ. Przyr., 3, 76–80. http://www.pan-ol.lublin.pl/wydawnictwa/TOchr3/Kozak.pdf Google Scholar
  76. Krupa D. & Czernaś K. (2003a). Struktura i produktywność fitoplanktonu w zapadliskowym zbiorniku Nadrybie przy kopalni Bogdanka na Pojezierzu Łęczyńsko-Włodawskim. Acta Agrophysica, 1(1), 123–129 (in Polish).Google Scholar
  77. Krupa, D. & Czernaś K. (2003b). Mass appearance of cyanobacterium Planktothrix rubescens in lake Piaseczno, Poland. Water Qual. Res. J. Canada, 38(1), 141–145. http://www.ipgp.fr/~bensoussan/Biblio_M2/PDF_Plankto*/Krupa_Czernas_2003_WaterQualResJCanada_Mass_appearance_cyanobacterium_Prub_lake_Piaseczno.pdf Google Scholar
  78. Krupa, D. & Czernaś K. (2003c). Fitoplankton i jego produktywność w jeziorach Płotycze k. Urszulina i Wereszyńskim w otulinie Poleskiego Parku Narodowego. Acta Agrophysica 1(1), 131–138 (in Polish).Google Scholar
  79. Kuczyńska-Kipper, N., Messyasz B., Nagengast B. (2004). Charakterystyka hydrobiologiczna wód Jeziora Lubaskiego Dużego na tle badań wieloletnich (1999–2002). Rocz. AR Pozn. CCCLXIII, Bot, 7, 167–174 (in Polish).Google Scholar
  80. Kuiper-Goodman, T., Falconer I. & Fitzgerald J. (1999) Human health aspects. In I. Chorus & J. Bartram (Eds.), Toxic Cyanobacteria in Water, A Guide to Their Public Health Consequences, Monitoring and Management (pp. 125–160). Published by WHO, Spon Press, London.Google Scholar
  81. Kurmayer, R., Dittman E., Fastner J. & Chorus I. (2002). Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany). Microb. Ecol, 43, 107–118. DOI: 10.1007/s00248-001-0039-3.Google Scholar
  82. Kurmayer, R. & Kutzenberger T. (2003). Application of real-time PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. Appl. Environ. Microbiol., 69(11), 6723–6730. DOI: 1128/AEM.69.11.6723-6730.2003.Google Scholar
  83. Kurmayer, R., Schober E., Tonk L., Visser P.M. & Christiansen G. (2011). Spatial divergence in the proportions of the genes encoding toxic peptides synthesis among populations of the cyanobacterium Planktothrix in European lakes. FEMS Microbiol. Lett, 317, 127–137. DOI: 10.1111/j.1574-6968.2011.02222.x.Google Scholar
  84. Lara, Y., Lambion A., Menzel D., Codd G.A. & Wilmotte A. (2013). A cultivation independent approach for the genetic and cyanotoxin characterization of colonial cyanobacteria. Aquat. Microb. Ecol, 69, 135–143. DOI: 10.3354/ame01628.Google Scholar
  85. Lenard, T. (2009). Metalimnetic bloom of Planktothrix rubescens in relation to environment al conditions. Ocean. Hydrobiol. Stud., 38(Suppl. 2), 45–53. http://centrostudinatura.it/public2/documenti/821-96544.pdf Google Scholar
  86. Luścińska, M. & Witek B. (2007). Zbiorowiska glonów fitoplanktonowych. In D. Borowiak (Ed.) Jeziora Kaszubskiego Parku Krajobrazowego (pp. 165–179). Wyd. Gdańsk, Katedra Limnologii Uniwersytet Gdański (in Polish).Google Scholar
  87. Mankiewicz, J., Walter Z., Tarczynska M., Palyvoda O., Wojtysiak-Staniszczyk M. & Zalewski M. (2002). Genotoxicity of cyanobacterial extracts containing microcystins from Polish water reservoirs as determined by SOS chromotest and comet assay. Environ. Toxicol, 17, 341–350. DOI: 10.1002/tox.10061.Google Scholar
  88. Mankiewicz, J., Komárková J., Izydorczyk K., Jurczak T., Tarczyńska M. & Zalewski M. (2005). Hepatotoxic cyanobacterial blooms in the lakes of Northern Poland. Environ. Toxicol, 20, 499–506. DOI: 1002/tox.20138.Google Scholar
  89. Mankiewicz-Boczek, J., Izydorczyk K., Romanowska-Duda Z., Jurczak T., Stefaniak K. & Kokociński M. (2006a). Detection and monitoring toxigenity of cyanobacteria by application of molecular methods. Environ. Toxicol, 21: 380–387. DOI: 1002/tox.20200.Google Scholar
  90. Mankiewicz-Boczek, J., Urbaniak M., Romanowska-Duda Z. & Izydorczyk K. (2006b). Toxic Cyanobacteria strains in lowland dam reservoir (Sulejow Res., Central Poland): amplification of mcy genes for detection and identification. Pol. J. Ecol, 54(2): 171–180. http://www.pol.j.ecol.cbe-pan.pl/article/ar54_2_01.pdf Google Scholar
  91. Mankiewicz-Boczek, J., Izydorczyk K. & Jurczak T. (2006c). Risk assessment of toxic Cyanobacteria in Polish water bodies. In A. G. Kungolos, C. A. Brebbia, C. P. Samaras & V. Popov (Eds.) Environmental Toxicology (pp. 49–58). WIT Transactions on Biomedicine and Health, Vol. 10. WITpress, Southampton, Boston.Google Scholar
  92. Mankiewicz-Boczek, J., Gagała I., Kokociński M., Jurczak T. & Stefaniak K. (2009). Perennial toxigenic Planktothrix agardhii bloom in selected lakes of Western Poland. Environ. Toxicol, 26(1), 10–20. DOI: 1002/tox.20524.Google Scholar
  93. Mankiewicz-Boczek, J., Palus J., Gągała I., Izydorczyk K., Jurczak T., Dziubałtowska E., Stępnik M., Arkusz J., Komorowska M., Skowron A. & Zalewski M. (2011). Effects of microcystins-containing cyanobacteria from a temperate ekosystem on human lymphocytes culture and their potential for adverse human health effects. Harmful Algae 10: 356–365. DOI: 1016/j.hal.2011.01.001.Google Scholar
  94. Mankiewicz-Boczek, J., Kokociński M., Gagała I., Pawełczyk J., Jurczak T. & Dziadek J. (2012). Preliminary Molecular Identification of Cylindrospermopsin-producing Cyanobacteria in Two Polish Lakes (Central Europe). FEMS Microbiol. Lett, 326: 173–179. DOI: 10.1111/j.1574-6968.2011.02451.x.Google Scholar
  95. Maršálek, B., Bláha L. & Babica P. (2003). Analyses of microcystins in the biomass of Pseudanabaena limnetica collected in the Znojmo reservoir. Czech Phycology, Olomouc, 3: 195–197.Google Scholar
  96. Mazur, H., Lewandowska J., Błaszczyk A., Kot A. & Plinski M. (2003). Cyanobacterial toxins in fresh and brackisch waters of Pomorskie Province (Northern Poland). Oceanol. Hydrobiol. Stud., 32(1) 15–26.Google Scholar
  97. Mazur-Marzec, H., Spoof L., Kobos J., Pliński M. & Meriluoto J. (2008). Cyanobacterial hepatotoxins, microcystins and nodularins, in fresh and brackish waters of Pomeranian Province, northern Poland. Oceanol. Hydrobiol. Stud, 37(4), 1–19.Google Scholar
  98. Mazur-Marzec, H., Błaszczyk A., Błońska M., Cichowska A., Kobos J., Sutryk K., Toruńska A. & Pliński M. (2010). Cyanobacterial blooms and cyanotoxin production in the Baltic Sea and the lakes of Pomeranian Province. In K. Olańczuk-Neyman & H. Mazur-Marzec (Eds.) Microorganisms in the environment and environmental englineering. From ecology to technology (pp. 159–170). Monografie Komitetu Inżynierii Środowiska PAN vol. 64.Google Scholar
  99. Mazurkiewicz-Boroń, G., Bednarz T. & Wilk-Woźniak E. (2008). Microbial efficiency in a meromictic reservoir. Oceanol. Hydrobiol. Stud, 37(2): 3–19. DOI: 10.2478/v10009-007-0047-9.Google Scholar
  100. Messineo, V., Bogiallib S., Melchiorrea S., Sechic N., Luglièc A., Casidduc P., Marianic M.A., Padeddac B.M., Di Corciab A., Mazzad R., Carlonid E. & Bruno M. (2009). Cyanobacterial toxins in Italian freshwaters. Limnologica 39, 93–106. DOI: 1016/j.limno.2008.09.001.Google Scholar
  101. Messyasz, B. (1998). Seasonal changes of phytoplankton dominated by cyanoprocaryota in Lake Laskownickie. Oceanol. Stud, 1, 33–37. YADDA: bwmeta1.element.agro-article-0837857c-eb1f-41f7-8966-cc26f41ff738.Google Scholar
  102. Messyasz, B. (2011). Fitoplankton. Wykaz gatunków sinic i glonów planktonowych (2004–2006). In L. Burchardt (Ed.) Jezioro Lednica. Historyczne i wspołczesne funkcjonowanie ekosystemu wodnego, Kwartet, pp. 225.Google Scholar
  103. Mischke, U. & Nixdorf B. (2003). Equilibrium phase conditions in shallow German lakes: How Cyanoprokaryota species establish a steady state phase in late summer. Hydrobiologia 502(1–3): 123–132. DOI: 10.1023/B:HYDR.0000004275.81490.92.Google Scholar
  104. Mur, L. R., Skulber O.M. & Utkilen H. (1999). Cyanobacteria in the environment, [in] Chorus I., Bartram J. (ed.) Toxic cyanobacteria in water: a guide to their public health consequences, ISBN 0-419-23930-8.Google Scholar
  105. Napiórkowska-Krzebietke, A. & Hutorowicz A. (2005). Long-term changes of phytoplankton in lake Mamry Północne. Oceanol. Hydrobiol. Study, 34(Suppl. 3), 217–228. DOI: 10.2478/v10086-009-0011-2.Google Scholar
  106. Napiórkowska-Krzebietke, A. & Hutorowicz A. (2006). Long-term changes of phytoplankton in Lake Niegocin, in the Masurian Lake Region, Poland. Ocean. Hydrobiol. Study, 35(3), 209–226. YADDA: bwmeta1.element.baztech-article-BUS5-0005-0044.Google Scholar
  107. Napiórkowska-Krzebietke, A. & Hutorowicz A. (2007). Long-term changes in the biomass and composition of phytoplankton in a shallow, flow-through Lake Kirsajty (Masurian Lakeland, Poland). Pol. J. Natur. Sc., 22(3), 512–524. DOI: 10.2478/v10020-007-0045-0.Google Scholar
  108. Napiórkowska-Krzebietke, A. & Hutorowicz A. (2013). A comparison of epilimnetic versus metalimnetic phytoplankton assemblages in two mesotrophic lakes, Oceanol. Hydrobiol. Stud, 42(1), 89–98. DOI: 10.2478/s13545-013-0059-x.Google Scholar
  109. Napiórkowska-Krzebietke, A., Pasztalaniec A. & Hutorowicz A. (2009). Phytoplankton — element in ecological status assessment for lakes of the Wel river catchment area, Teka Kom. Ochr. Kszt. Środ. Przyr, — OL PAN, 6, 200–205. http://dewelopment.eu/p/Napiorkowska-Krzebietke_etal_Phytoplankton_Teka.pdf Google Scholar
  110. Nõges, T., Tõnno I., Laugaste R., Loigu E. & Skakalski B. (2004). The impact of changes in nutrient loading on cyanobacterial dominance in Lake Peipsi (Estonia/Russia), Arch. Hydrobiol, 160(2), 261–279. DOI: 1127/0003-9136/2004/0160-0261.Google Scholar
  111. Olenina, I., Hajdu S., Andersson A., Edler L., Wasmund N., Busch S., Göbel J., Gromisz S., Huseby S., Huttunen M., Jaanus A., Kokkonen P., Ledaine I. & Niemkiewicz E. (2006). Biovolumes and size-classes of phytoplankton in the Baltic Sea. Baltic Sea Environment Proceedings No.106, pp. 144. Helsinki Commission, Helsinki, ISSN 0357-2994. http://www.helcom.fi/stc/files/Publications/Proceedings/bsep106.pdf Google Scholar
  112. O’Neil, J.M., Davis T.W., Burford M.A. & Gobler J.J. (2012). The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae, 14, 313–334. DOI: 1016/j.hal.2011.10.027.Google Scholar
  113. Ouahid, Y., Pérez-Silva G. & del Campo F.F. (2005). Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplification o specific microcystin synthetase gene regions. Environ.Toxicol., 20, 235–242. DOI: 1002/tox.20103.Google Scholar
  114. Padisák, J. (1992). Seasonal succession of phytoplankton in the large shallow lake (Balaton, Hungary): A dynamic approach to ecological memory, its possible role and mechanisms. J. Ecol, 80, 217–230. DOI: 10.2307/2261008.Google Scholar
  115. Padisák, J. (1997). Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch. Hydrobiol, (Suppl.) 107, 563–593. http://real.mtak.hu/3229/1/1014071.pdf Google Scholar
  116. Padisák, J., Borics G., Fehér G., Grigorszky I., Oldal I. Schmidt A. & Zámbóné-Doma Z. (2003). Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502, 157–168. DOI: 10.1023/B:HYDR.0000004278.10887.40.Google Scholar
  117. Pawlik-Skowrońska, B., Skowroński T., Pirszel J. & Adamczyk A. (2004). Relationship between cyanobacterial bloom composition and anatoxin-a and microcystin occurrence in the eutrophic dam reservoir (SE Poland). Pol. J. Ecol, 52(4), 479–490. YADDA: bwmeta1.element.baztech-article-BGPK-0833-3419.Google Scholar
  118. Pawlik-Skowrońska, B., Pirszel J. & Kornijów R. (2008). Spatial and temporal variation in microcystin concentrations during perennial bloom of Planktothrix agardhii in a hypertrophic lake. Ann. Limnol. — Int. J. Lim, 44(2), 145–150. DOI: 1051/limn:2008015.Google Scholar
  119. Pawlik-Skowrońska, B., Kornijów R. & Pirszel J. (2010). Sedimentary imprint of cyanobacterial blooms — a new tool for insight into recent history of lakes. Pol. J. Ecol, 58(4), 663–670. YADDA: bwmeta1.element.baztech-article-BGPK-3178-2306.Google Scholar
  120. Pawlik-Skowrońska, B. & Toporowska M. (2011). Blooms of toxin-producing cyanobacteria-a real threat in small dam reservoirs at the beginning of their operation. Oceanol. Hydrobiol. Stud, 40(4), 30–37. DOI: 10.2478/s13545-011-0038-z.Google Scholar
  121. Pawlik-Skowrońska, B., Toporowska M. & Skowroński T. (2011). Cyanobacterial blooms, cyanotoxins and their accumulation in ichthyofauna of Zemborzycki dam reservoir (E. Poland). 30th International Conference of the Polish Phycological Society. Wrocław-Pawłowice, Poland, 19–21st May.Google Scholar
  122. Pawlik-Skowrońska, B., Toporowska M. & Rechulicz J. (2012). Simultaneous accumulation of anatoxin-a and micorcystins in three fish species indigenous to lakes affected by cyanobacterial blooms. Oceanol. Hydrobiol. Stud, 41(4), 53–65. DOI: 10.2478/s13545-012-0039-6.Google Scholar
  123. Pawlik-Skowrońska B. & Toporowska M. (2013). Blooms of toxigenic cyanobacteria in four regulated lakes in the Wieprz-Krzna chanel system (Łęczyńsko-Włodawskie Lakeland). Conference Function, threat and protection of small water bodies, Janów Lubelski, 25–29th September, (in Polish)Google Scholar
  124. Pełechata, A., Pełechaty M. & Pukacz A. (2006). Cyanoprokaryota of shallow lakes of Lubuskie Lakeland (mid-western Poland). Oceanol. Hydrobiol. Stud, 35(1), 3–14. YADDA: bwmeta1.element.baztech-article-BUS5-0005-0027.Google Scholar
  125. Pełechata, A., Walna B., Pełechaty M., Kaczmarek L., Ossowski P. & Lorenc M., (2009). Seasonal dynamics of the algae and blue-green assemblage of Góreckie Lake against the background of the physical-chemical properties of water and the development of macrophytes. In B. Walna, L. Kaczmarek, M. Lorenc & R. Dondajewska (Eds.) Wielkopolski Park Narodowy w badaniach przyrodniczych (pp. 27–42). Poznań-Jeziory (in Polish with Engl. summ.).Google Scholar
  126. Pereira, P., Onodera H., Andrinolo D., Franca S., Araújo F., Lagos N. & Oshima Y. (2000). Paralytic shellfish toxins in the freshwater cyanobacterium Aphanizomenon flos-aquae, isolated from Montargil reservoir, Portugal. Toxicon, 38(12), 1689–1702. DOI: 10.1016/S0041-0101(00)00100-8.Google Scholar
  127. Preußel, K., Stüken A., Wiedner C., Chorus I. & Fastner J. (2006). First report on cylindrospermopsin producing Aphanizomenon flos-aquae (Cyanobacteria) isolated from two German lakes. Toxicon 47: 156–162. DOI: 1016/j.toxicon.2005.10.013.Google Scholar
  128. Pliński, M., Musiał A. & Ostrowski B. (1998). Blue-green algae blooms in the Gulf of Gdańsk and surrounding area. Oceanol. Stud, 1, 39–44. YADDA: bwmeta1.element.baztech-article-BUS8-0025-0023.Google Scholar
  129. Pociecha A. & Wilk-Woźniak E. (2003). Cyanoprokaryota-Cladocera relationships in a submontane dam reservoir modified by hydrological conditions. Algol. Stud, 109, 499–508. DOI: 1127/1864-1318/2003/0109-0499.Google Scholar
  130. Pociecha A. & Wilk-Woźniak E. (2005). Dynamics of phyto- and zooplankton in the submountane dam reservoirs with different trophic status. Limnol. Rev, 5, 215–221. http://www.ptlim.pl/lr2005/pdf/pociecha.pdf Google Scholar
  131. Pociecha A. & Wilk-Woźniak E. (2006). The life strategy and Dynamics of selected species of phyto- and zooplankton in a dam reservoir Turing „wet” and „dry” years. Pol. J. Ecol, 54(1), 29–38.Google Scholar
  132. Prus, P., Hutorowicz A. & Napiórkowksa-Krzebietke A. (2007). Fitoplankton i bentos w zbiornikach zaporowych Brody Iłżeckie i Chańcza w odniesieniu do gospodarki rybackiej. In M. Mickiewicz (Ed.) Stan rybactwa w jeziorach, rzekach i zbiornikach zaporowych w 2006 roku (pp. 111–124). IRS Olsztyn (in Polish).Google Scholar
  133. Rakowska, B., Sitkowska M., Szczepocka E. & Szulc B. (2005). Cyanobacteria water blooms with various eucariotic algae in the Sulejów Reservoir. Oceanol. Hydrobiol. Stud, 34(1), 31–38. YADDA: bwmeta1.element.baztech-article-BUS5-0012-0019.Google Scholar
  134. Rantala, A., Rajaniemi-Wacklin P., Lyra Ch., Lepisto L., Rintala J., Mankiewicz-Boczek J. & Sivonen K. (2006). Detection of Microcystin-Producing Cyanobacteria in Finnish Lakes with Genus-Specific Microcystin Synthetase Gene E (mcyE) PCR and Associations with Environmental Factors. Appl. Environ. Microbiol, 22, 6101–6110. DOI: 10.1128/AEM.01058-06.Google Scholar
  135. Rapala, J., Sivonen K., Luukkainen R. & Niemelä S. I. (1993). Anatoxin-a concentrations in Anabaena and Aphanizomenon under different environmental conditions and comparison of growth by toxic and non-toxic Anabaena strains — a laboratory study. J. Appl. Phycol, 5,581–591. DOI: 1007/BF02184637.Google Scholar
  136. Rapala J. & Sivonen K. (1998). Assessment of environmental conditions that favour hepatotoxic and neurotoxic Anabaena spp. strains cultured under light limitation a different temperatures. Microb. Ecol, 36, 181–192. http://link.springer.com/content/pdf/10.1007/s002489900105.pdf Google Scholar
  137. Reinehart, K. L., Harada K-I., Namikoshi M., Chen C. & Harvis, C. A. (1988). Nodularin, Microcystin, and the Configuration of Adda. J. Am. Chem. Soc, 110, 8557–8558. DOI: 10.1021/ja00233a049.Google Scholar
  138. Repka, S., Meyerhöfer M., von Bröckel K. & Sivonen K. (2004). Associations of cyanobacterial toxin, nodularin, with environmental factors and zooplankton in the Baltic Sea. Microb. Ecol., 47, 350–358. DOI: 10.1007/s00248-003-2010-y.Google Scholar
  139. Rohrlack, T., Dittman E., Börner T. & Christoffersen K. (2001), Effects of cell-bound microcystins of survival and feeding of Daphnia spp. Appl. Environ. Microbiol, 67(8), 3523–3529. DOI: 1128/AEM.67.8.3523-3529.2001.Google Scholar
  140. Rohrlack, T., Edvardsen B., Skulberg R., Halstvedt C. B., Utkilen H. C., Ptacnik R. & Skulberg O.M. (2008). Oligopeptide chemotypes of the toxic freshwater cyanobacterium Planktothrix can form subpopulations with dissimilar ecological traits. Limnol. Oceanogr, 53(4), 1279–1293. http://www.aslo.org/lo/toc/vol_53/issue_4/1279.pdf Google Scholar
  141. Rojo, C. & Cobelas M. A. (1994). Population dynamics of Limnothrix redekei, Oscillatoria lanceaeformis, Planktothrix agardhii and Pseudanabaena limnetica (cyanobacteria) in a shallow hypertrophic lake (Spain). Hydrobiologia 275–276(1), 165–171. DOI: 10.1007/BF00026708.Google Scholar
  142. Rücker, J., Stüken A., Nixdorf B., Fastner J., Chorus I. & Wiedner C. (2007), Concentrations of particulate and dissolved cylindrospermopsin in 21 Aphanizomenon-dominated temperate lakes. Toxicon 50, 800–809. DOI: 1016/j.toxicon.2007.06.019.Google Scholar
  143. Santos, M. C. R., Muelle H. & Pacheco D. M. D. (2012). Cyanobacteria and microcystins in lake Furnas (S. Miguel island-Azores). Limnetica, 31(1), 107–118. http://www.limnetica.com/Limnetica/Limne31/L31a107_Cyanobacteria_microcystins_lake_Furnas.pdf Google Scholar
  144. Sierosławska, A., Rymuszka A., Kalinowska R., Skowroński T., Bownik A. & Pawlik-Skowrońska B. (2010). Toxicity of cyanobacterial bloom in the eutrophic dam reservoir (Southeast Poland). Environ. Toxicol. Chem, 29, 556–560. DOI: 10.1002/etc.86.Google Scholar
  145. Sivonen, K., Niemelä S. I., Niemi R. M., Lepistö L., Luoma T. H. & Räsänen L. A. (1990). Toxic cyanobacteria (blue-green algae) in Finnish fresh and coastal waters. Hydrobiologia, 190, 267–275. DOI: 10.1007/BF00008195.Google Scholar
  146. Sivonen, K. & Börner T. (2008). Bioactive compounds produced by cyanobacteria. In A. Herrero & E. Flores (Eds.) The Cyanobacteria. Molecular biology, genomics and evolution (pp. 159–197). Caister Academic Press, Norfolk, UK.Google Scholar
  147. Sivonen, K. & Jones G. (1999), Cyanobacterial toxins In I. Chorus & J. Bartram (Eds.), Toxic Cyanobacteria in Water, A Guide to Their Public Health Consequences, Monitoring and Management (pp. 41–111). Published by WHO, Spon Press, London.Google Scholar
  148. Skulberg, O. M., Underdal B. & Utkilen H. (1994). Toxic water blooms with cyanophytes in Norway — current knowledge. Arch. Hydrobiol. Supp., Algol. Stud, 75, 279–289.Google Scholar
  149. Solis, M. (2005). Relationships between selected abiotic variables and phytoplankton composition in deep mesotrophic Lake Zagłębocze. Oceanol. Hydrobiol. Stud., 34(4), 81–96. YADDA: bwmeta1.element.baztech-article-BUS5-0012-0049.Google Scholar
  150. Solis, M. (2010). Population dynamics of Planktothrix agardhii in relation to environmental factors in the shallow reservoir Mytycze (Łeczna-Włodawa Lakeland). Book of abstracts of the 29th International Conference of the Polish Phycological Society, Kraków, Poland, 19–23rd May 2010, p. 156.Google Scholar
  151. Solis, M., Poniewozik M. & Mencfel R. (2009). Bloom-forming cyanobacteria and other algae in selected anthropogenic reservoirs of the Łęczna-Włodawa Lakeland. Oceanol. Hydrobiol. Stud, 38(Suppl.2), 71–78.Google Scholar
  152. Solis, M., Poniewozik M. & Wojciechowska W. (2010). The assessment of water fertility based on biodiversity of planktonic alga community in six lakes located in the Biosphere Reserve “Polesie Zachodnie”. In T. J. Chmielewski & D. Piasecki (Eds.) The future of hydrogenic landscapes in European biosphere reserves (pp. 321–340). TRIO System Jacek Andrzejewski, Lublin.Google Scholar
  153. Stefaniak, K. & Kokociński M. (2005). Occurrence of invasive cyanobacteria species in polimictic lakes of the Wielkopolska region (Western Poland). Oceanol. Hydrobiol. Stud, 34(Suppl.3), 137–148. YADDA bwmeta1.element.agro-article-8b7051ae-26ae-4e53-a83a-7664d77c702f.Google Scholar
  154. Stefaniak, K., Kokociński M. & Messyasz B. (2005). Dynamics of Planktothrix Agardhii (Gom.) Anagn. et Kom. blooms in polimictic Lake Laskownickie and Grylewskie (Wielkopolska Region) Poland. Oceanol. Hydrobiol. Stud, 34(Suppl.3), 125–136.Google Scholar
  155. Stewart, I., Schluter P.J. & Shaw G.R. (2006). Cyanobacterial lipopolysaccharides and human health — a review. Env. Health, 24, 5–7. DOI: 10.1186/1476-069X-5-7.Google Scholar
  156. Stüken, A., Campbell R.J., Quesada A., Sukenik A., Dadheech P. & Wiedner C. (2009). Genetic and morphologic characterization of four putative cylindrospermopsin producing species of the cyanobacterial genera Anabaena and Aphanizomenon. J. Plankton Res, 31(5), 465–480. DOI: 10.1093/plankt/fbp011.Google Scholar
  157. Sukenik, A., Hadas O., Kaplan A. & Quesada A. (2012). Invasion of Nostocales (cyanobacteria) to subtropical and temperate freshwater lakes — physiological, regional, and global driving forces. Frontiers in Microbiology, 3(88), 1–9. DOI: 3389/fmicb.2012.00086.Google Scholar
  158. Sychrova, E., Štěpánková T., Nováková K., Bláha L., Giesy, J. P. & Hilscherová K. (2012). Estrogenic activity in extracts and exudates of cyanobacteria and green algae. Environ. Int., 38: 134–140. DOI: 1016/j.envint.2011.10.004.Google Scholar
  159. Szczurowska, A., Czernaś K., Banach B., 2009. Phytoplankton communities of the Lake Białe (Łęczyna-Włodawa Lakeland). Teka. Kom. Ochr. Środ. Przyr, OL PAN. 6, 362–367. http://www.pan-ol.lublin.pl/wydawnictwa/TOchr7/spis.pdf Google Scholar
  160. Szeląg-Wasilewska, E. (1997). Picoplankton and other size groups of phytoplankton in various shallow lakes. Hydrobiologia 342/343, 79–85. DOI: 10.1007/978-94-011-5648-6_9.Google Scholar
  161. Szeląg-Wasilewska, E. (2006). Trophic status of lake water evaluated using phytoplankton community structure — change after two decades. Pol. J. Ecol, 15(1), 139–144. http://www.pjoes.com/pdf/15.1/139-144.pdf Google Scholar
  162. Szeląg-Wasilewska, E. (2007). Trophic state assessment based on late summer phytoplankton community structure: a case study for epilimnetic lake water. Oceanol. Hydrobiol. Stud, 36(3), 53–63. YADDA: bwmeta1.element.baztech-article-BUS5-0008-0020.Google Scholar
  163. Szeląg-Wasilewska, E., Zagajewski P. & Stachnik W. (2009). Cyanobacterial community of the lowland Warta River (Poland). Oceanol. Hydrobiol. Stud, 38(Suppl.3), 99–106.Google Scholar
  164. Tarczyńska, M., Romanowska-Duda Z., Jurczak T. & Zalewski M. (2001). Toxic cyanobacterial blooms in drinking water reservoir — causes, consequences and management strategy. Wat. Sci. Tech. Water Supply, 1, 237–246.Google Scholar
  165. Toporowska, M., Pawilk-Skowrońska B., Krupa D., & Kornijów R. (2010). Winter versus summer blooming of phytoplankton in a shallow lake: effect of hypertrophic conditions. Pol. J. Ecol, 58(1), 3–12. http://www.pol.j.ecol.cbe-pan.pl/article/ar58_1_01.pdf Google Scholar
  166. Toporowska, M., Pawilk-Skowrońska B. & Kalinowska R. (2013). Accumulation and effects of cyanobacterial microcystins and anatoxin-a on benthic larvae of Chironomus sp. (Diptera: Chironomidae). Eur. J. Entomol, (in press).Google Scholar
  167. Via-Ordorika, L., Fastner J., Kurmayer R., Hisbergues M., Dittmann E., Komarek J., Erhard M. & Chorus I. (2004). Distribution of microcystin-producing and nonmicrocystin-producing Microcystis sp. in European freshwater bodies: detection of microcystins and microcystin genes in individual colonies. Syst. Appl. Microbiol, 27(5), 592–602. DOI: 1078/0723202041748163.Google Scholar
  168. Wacklin, P., Hoffmann L. & Komárek J. (2009). Nomenclatiral validation of the genetically revised cyanobacterial genus Dolichospermum (Ralfs ex Bornet et Flahaut) comb. nova. Fottea, 9, 59–64. http://fottea.czechphycology.cz/_contents/F09-1-2009-05.pdf Google Scholar
  169. Walsby, A. E., Hayes P. K., Boje R. & Stal L. J. (1997). The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytologist 136, 407–417. DOI: 10.1046/j.1469-8137.1997.00754.x.Google Scholar
  170. Walsby, A. E. (2005). Stratification by cyanobacteria in lakes: a dynamic buoyancy model indicates size limitations met by Planktothrix rubescens filaments. New Phytologist 168, 365–376. DOI: 10.1111/j.1469-8137.2005.01508.x.Google Scholar
  171. Wilk-Woźniak, E. (1998). Late autumn mass development of Woronichinia naegeliana (Cyanophyceae) in dam reservoir in Southern Poland. Biologia, Bratislava 53(1), 1–5.Google Scholar
  172. Wilk-Woźniak, E. & Bucka H. (1998). Occurence of dominating species in the vegetative period in two chosen dam reservoirs of southern Poland (Wisła-Czarne Reservoir and Dobczyce Reservoir). Oceanol. Stud, 2, 77–81. YADDA: bwmeta1.element.agro-article-e4a80973-404a-48c6-b6ed-53494e62ca0c.Google Scholar
  173. Wilk-Woźniak E. & Bucka H. (2000). Species diversity of algae and cyanobacteria in phytoplankton communities on the example of history of Roźnów dam reservoir. A review. Pol. Arch. Hydrobiol, 47(2), 213–224.Google Scholar
  174. Wilk-Woźniak, E. & Mazurkiewicz-Boroń G. (2003). The autumn dominance of cyanoprokaryotes in a deep meso-eutrophic submontane reservoir. Biologia, Bratislavia 58(1), 17–24.Google Scholar
  175. Wilk-Woźniak, E. & Cerbin S., Marshall H.G., Burchardt L. (2006). Ultra-structure of two common cyanobacteria: Microcystis aeruginosa Kütz. And Woronichinia naegeliana (Unger) Elenkin using scanning electron microscopy. Algol. Stud, 121, 85–89. DOI: 1127/1864-1318/2006/0121-0085.Google Scholar
  176. Willame, R., Jurczak T., Iffly J.-F., Kull T. & Meriluoto J. (2005). Distribution of hepatotoxic cyanobacterial blooms in Belgium and Luxembourg. Hydrobiologia 551, 99–117. DOI: 10.1007/s10750-005-4453-2Google Scholar
  177. Willame, R., Boutte C., Grubisic S., Wilmotte A., Komarek J. & Hoffmann L. (2006). Morphological and molecular characterization of planktonic cyanobacteria from Belgium and Luxembourg. J. Phycol, 42, 1312–1332. DOI: 10.1111/j.1529-8817.2006.00284.x.Google Scholar
  178. Willén, T. & Mattsson, R. (1997). Water-blooming and toxinproducing Cyanobacteria in Swedish fresh and brackish waters. 1981–1995. Hydrobiologia 353, 181–192. DOI: 1023/A:1003047019422.Google Scholar
  179. Wiśniewska, M. (1998). Cyanophyta blooms in Koronowski Reservoir in the background of environmental conditions. Oceanol. Stud, 1, 45–52. YADDA bwmeta1.element.baztech-article-BUS8-0025-0024.Google Scholar
  180. Wiśniewska, M. (2010). Phytoplankton dynamics in the reservoir lake “Żur” on the pomeranian Wda River. Oceanol. Hydrobiol. Stud, 39(4), 157–171. DOI: 10.2478/v10009-010-0058-9Google Scholar
  181. Wiśniewska, M., Krupa D., Pawlik-Skowrońska B. & Kornijów R. (2007). Development of toxic Planktothrix agardhii (Gom.) Anagn. et Kom. and potentially toxic algae in the hypertrophic Lake Syczyńskie (Eastern Poland). Oceanol. Hydrobiol. Stud, 36(Suppl.1), 173–179.Google Scholar
  182. WHO, 1998. Guidelines for Drinking-water Quality. Second edition, Addendum to Volume 2, Health criteria and other supporting information, Geneva.Google Scholar
  183. Wojciechowska, W., Poniewozik M. & Pasztelaniec A. (2004). Vertical distribution of dominant cyanobacteria species in three lakes — evidence of tolerance to different turbulence and oxygen conditions, Polish J. Ecol, 52(3), 347–351. http://www.pol.j.ecol.cbe-pan.pl/article/ar52_3_09.pdf Google Scholar
  184. Wojciechowska, W. & Solis M. (2009). Pro- and eukaryotic algae in lakes of the Łęczyńsko-Włodawskie Lakeland, Wyd. KUL, Lublin, str. 86 (in Polish).Google Scholar
  185. Yépremian, C., Gugger M.F., Briand E., Catherine A., Berger C., Quiblier C. & Bernard C. (2007). Microcystin ecotype in a perennial Planktothrix agardhii bloom. Water Research 41, 4446–4456. DOI: 1016/j.watres.2007.06.028.Google Scholar
  186. Zapomělová, E., Skácelová O., Pumann O., Kopp R. & Janeček E. (2012). Biogeographically interesting planktonic Nostocales (Cyanobacteria) in the Czech Republic and their polyphasic evaluation resulting in taxonomic revisions of Anabaena bergii Ostenfeld 1908 (Chrysosporum gen. nov.) and A. tenericaulis Nygaard 1949 (Dolichospermum tenericaule comb. nova). Hydrobiologia 698, 353–365. DOI: 10.1007/s10750-012-1034-z.Google Scholar
  187. Zagajewski, P., Gołdyn R. & Fabiś M. (2007). Water blooms and their toxicity in public swimming areas of lakes in the Poznań district. Oceanol. Hydrobiol. Stud, 36(Suppl.1), 181–187. YADDA bwmeta1.element.agro-article-7def515e-c29d-4bd3-8639-7a8396e28c80.Google Scholar
  188. Zagajewski, P., Gołdyn R. & Fabiś M. (2009). Cyanobacterial volume and microcystin concentration in recreational lakes (Poznań — Western Poland). Oceanol. Hydrobiol. Stud, 38(Suppl.2), 113–120.Google Scholar
  189. Zębek, E. (2005). Annual succession patterns of blue-green algae as related to physicochemical water parameters in the urban Lake Jeziorak Mały in the 1998–2003 period. Oceanol. Hydrobiol. Stud, 34(4), 33–46.Google Scholar
  190. Zębek, E. (2006). Quantitative changes of Planktolyngbya brevicellularis, Limnothrix redekei and Aphanizomenon gracile in the annual cycle vs. physicochemical water parameters in the urban Lake Jeziorak Mały. Oceanol. Hydrobiol. Stud, 35(1), 96–84. YADDA: bwmeta1.element.baztech-article-BUS5-0005-0033.Google Scholar
  191. Znachor, P., Jurczak T., Komárkowa J., Jezberová J., Mankiewicz J., Kaštovská K. & Zapomělová E. (2006). Summer changes in cyanobacterial bloom composition and microcystin concentration in eutrophic Czech reservoirs. Environ. Toxicol., 21, 236–243. DOI: DOI 10.1002/tox.20176.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Justyna Kobos
    • 1
  • Agata Błaszczyk
    • 1
  • Natalia Hohlfeld
    • 1
  • Anna Toruńska-Sitarz
    • 1
  • Anna Krakowiak
    • 1
  • Agnieszka Hebel
    • 1
  • Katarzyna Sutryk
    • 1
  • Magdalena Grabowska
    • 2
  • Magdalena Toporowska
    • 3
  • Mikołaj Kokociński
    • 4
  • Beata Messyasz
    • 4
  • Andrzej Rybak
    • 4
  • Agnieszka Napiórkowska-Krzebietke
    • 6
  • Lidia Nawrocka
    • 7
  • Aleksandra Pełechata
    • 4
  • Agnieszka Budzyńska
    • 4
  • Paweł Zagajewski
    • 4
  • Hanna Mazur-Marzec
    • 1
  1. 1.Department of Marine Biology and Ecology, Laboratory of Biochemical Ecology of MicroorganismsUniversity of Gdańsk, Faculty of Oceanography and GeographyGdyniaPoland
  2. 2.Department of HydrobiologyUniversity of BiałystokBiałystokPoland
  3. 3.Department of HydrobiologyUniversity of Life Sciences in LublinLublinPoland
  4. 4.Faculty of Biology, Department of HydrobiologyA. Mickiewicz UniversityPoznańPoland
  5. 5.Collegium PolonicumA. Mickiewicz University — Europa — Universität ViadrinaSłubicePoland
  6. 6.The Stanisław Sakowicz Inland Fisheries Institute In OlsztynOlsztynPoland
  7. 7.The State School of Higher Professional Education in ElblągInstitute of TechnologyElblągPoland

Personalised recommendations