Oceanological and Hydrobiological Studies

, Volume 41, Issue 4, pp 8–16 | Cite as

Effects of some abiotic factors on the occurrence of aquatic mycobiota in lakes of the Drawa National Park

  • Kinga Mazurkiewicz-Zapałowicz
  • Artur Silicki
  • Andrzej Gregorczyk
  • Anna Biedunkiewicz
  • Maria Wolska
Original Research Paper


Effects of environmental factors, including acidity, temperature, oxygen, nitrogen, phosphate and total iron content, on the diversity of aquatic mycobiota in lake water were studied in two lakes in Northern Poland in 2005–2007. Fifty four species of fungi and fungus-like organisms were recorded in the sub-surface and benthic of both lakes. There were 36 and 45 species in Lakes Marta and Sitno, respectively. The greatest species diversity was observed with a higher content of oxygen and biogenic compounds in the surface water. Temperature and oxygen content were the most important factors affecting the distribution of mycobiota in lake water.

Key words

aquatic mycobiota fungi environmental factors diversity indices CCA ordination Drawa National Park 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnett, J.A., Payne R. & Yarrow D. (1990). Yeasts: Characteristic and identification. Cambridge: University Press.Google Scholar
  2. Batko, A. (1975). Hydromycology on over view. Warszawa: PWN (in Polish)Google Scholar
  3. Baudoin, J.M., Guérold, F., Felten, V., Chauvet, E., Wagner, P. & Rousselle, P. (2008). Elevated aluminium concentration in acidified headwater streams lowers aquatic hyphomycete diversity and impairs leaf-litter breakdown. Microb. Ecol. 56(2), 260–269.CrossRefGoogle Scholar
  4. Biedunkiewicz, A., Silicki A. & Mazurkiewicz - Zapałowicz K. (2007). Yeast-like fungi in selected baths of Szczecin. Limnol. Rev. 7(3), 125–132.Google Scholar
  5. Chung, N. & Suberkropp, K. (2008). Influence of shredder feeding and nutrients on fungal activity and community structure in headwater streams. Fundamen. Appl. Limnol. 173(1), 35–46.CrossRefGoogle Scholar
  6. Czeczuga, B., Kiziewicz B. & Danilkiewicz Z. (2002). Zoosporic fungi growing on the specimens of certain fish species recently introduced to Polish waters. Acta Ichthyol. Piscat. 32(2), 117–125.Google Scholar
  7. De Hoog, G.S., Guarro J., Gene J. & Figuerras M.J. (2000). Atlas of clinical fungi. Centraalbureau voor Schimmelcultures. Reus: Utrecht/Universitat Rovira and Virgili.Google Scholar
  8. Duarte, S., Pascoal, C., Garabétian, F., Cássio, F. & Charcosset, J.-Y. (2009). Microbial decomposer communities are mainly structured by trophic status in circumneutral and alkaline streams. Appl. Environ. Microbiol. 75(19), 6211–6221.CrossRefGoogle Scholar
  9. Dynowska, M. (1995). Yeasts and yeast-like fungi as pathogens and bio-indicators in aquatic ecosystems. Habilitation thesis., Stud. i Mat. WSP Olsztyn, Poland (in Polish with English summary)Google Scholar
  10. Dynowska, M., Biedunkiewicz A. & Ejdys E. (2000). Pathogenic yeast-like fungi with bio-indicator properties. Pol. J. Environ. Stud. Sup. I ECO-MED., 10, 13–16.Google Scholar
  11. Eaton, A.D., Clesceri L.S., Rice E.W., Greenberg A.E. & Franson M.A.H. (2005). Standard methods for the examination of water and wastewater. In Revelling in Reference: 21ed American Public Health Association, (pp. 1360). Washington, DC.Google Scholar
  12. Ferreira, V. & Chauvet, E. (2011a). Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams. Oecologia, 167(1), 279–291.CrossRefGoogle Scholar
  13. Ferreira, V. & Chauvet, E. (2011b). Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biology 17(1), 551–564.CrossRefGoogle Scholar
  14. Gadanho, M., Libkind, D. & Sampaio, J.P. (2006). Yeast diversity in the extreme acidic environments of the Iberian pyrite belt. Microb. Ecol. 52(3), 552–563.CrossRefGoogle Scholar
  15. Howard, D.H. (2003). Pathogenic fungi in humans and animals. New York, Basel: Marcel Dekker Inc.Google Scholar
  16. Johnson, T.W. Jr., Seymour R.L. & Padgett D.E. (2002). Biology and systematics of the Saprolegniaceae. Retrieved July 30, 2008, from
  17. Khulbe, R.D. (2001). A manual of aquatic fungi (Chytridiomycetes & Oomycetes. Delhi: Daya Publishing House.Google Scholar
  18. Kitancharoen, N., Yuasa K. & Hatai K. (1996). Effects of pH and temperature on growth of Saprolegnia diclina and S. parasitica isolated from various sources. Mycoscience, 37(4), 385–390.CrossRefGoogle Scholar
  19. Kiziewicz, B., Mazalska B., Godlewska A., Muszyńska E., Kuśtowska E. & Świderska M. (2006). Occurrence of aquatic fungi in relation to pH of the sub-surface waters. Ecological processes in extreme conditions. In Revelling in Reference: VII Toruńskie Seminarium Ekologiczne. Stresz. Konf. Nauk. PTEkol. Toruń (in Polish)Google Scholar
  20. Koeypudsa, W., Phadee P., Tangtrongpiros J. & Hatai K. (2005). Influence of pH, temperature and sodium chloride concentration on growth rate of Saprolegnia sp. J. Sci. Res. Chula. Univ. 30(2), 123–130.Google Scholar
  21. Kreger - Van Rij, N.J.W. (1984). The yeasts — a taxonomic study. Third revision and enlarged edition. Amsterdam: Els. Sci. Pub. B.V.Google Scholar
  22. Kuczyńska-Kippen, N. & Milecka, E. (2009). The diurnal distribution of the zooplankton community of the littoral zone of Lake Wielkowiejskie (Wielkopolski National Park, Poland). Oceanol. Hydrobiol. St. 38(2), 91–98.CrossRefGoogle Scholar
  23. Kurnatowska, A. (1995). The chosen issues of medical mycology. łódź: Promedi (in Polish).Google Scholar
  24. Mieczan, T. (2007). Relationship among ciliated protozoa and water chemistry in small peat-bog reservoirs (łęczna-Włodawa Lakeland, eastern Poland). Oceaol. Hydrobiol. St. 36(2), 77–86.CrossRefGoogle Scholar
  25. Naceur, H.B., Rejeb Jenhani, A.B. & Romdhane, M.S. (2011). In situ study of adult Artemia salina morphometry and its relationship to the physicochemical water parameters in the saltwork of Sahline (Tunisia). Oceanol. Hydrobiol. St. 40(4), 41–51.Google Scholar
  26. Nejadsattari, T. (2000). Occurrence and distribution of aquatic Saprolegniaceae in Northwest and South of Teheran. Iranian Int. J. Sci. 1(2), 1–5.Google Scholar
  27. Panchai, K., Hanjavanit C. & Kitancharoen N. (2006). Characteristics of Saprolegnia diclina isolated from eggs Tilapia (Oreochromis niloticus Linn.). In Revelling in Reference: 32nd Congress on Science and Technology of Thailand, October 10–12, Bangkok.Google Scholar
  28. Paturej E. & Kruk, M. (2011). The impact of environmental factors on zooplankton communities in the Vistula Lagoon. Oceanol. Hydrobiol. St. 40(2), 37–48.CrossRefGoogle Scholar
  29. Piernik, A. (2008). Numerical methods in ecology for example of MVSP package application to analysis of vegetation. Scientific Publishers of Nicolaus Copernicus University, Toruń, (in Polish).Google Scholar
  30. Riethmüller, A. (2000). Morphologie, ökologie und Phylogenie aquatischer Oomyceten. Berlin — Stuttgart: Bibl. Mycol. (in German)Google Scholar
  31. Roberts, R. (1963). A study of the distribution of certain members of the Saprolegniales. Trans. Br. Mycol. Soc. 46, 213–224.CrossRefGoogle Scholar
  32. Salvin, S.B. (1941). Comparative studies on the primary and secondary zoospores of the Saprolegniaceae. I. Influens of temperature. Mycologia, 33, 592–600.CrossRefGoogle Scholar
  33. Silicki, A. (2008). The biodiversity and significance of water fungi in chosen lakes of Drawa National Park. Unpublished doctoral dissertation, AR Szczecin, Poland (in Polish)Google Scholar
  34. Skirgiełło, A. (1954). Lower fungi. Archimycetes and Phycomycetes. A guide based on morphology and systematic, with keys for identification. Warszawa: PWN. (in Polish)Google Scholar
  35. Suzuki, S. (1960). Seasonal variation in the mount of zoospores of aquatic Phycomycetes in Lake Shinseiko. Botan. Mag. (Tokyo), 73, 483–486.Google Scholar
  36. Swiontek-Brzezinska, M., Lalke-Porczyk, E. & Donderski W. (2007). Chitinolytic activity of bacteria and fungi isolated from shrimp exoskeletons. Oceanol. Hydrobiol. St. 36(3), 101–111.CrossRefGoogle Scholar
  37. Van der Maarel, E. (1979). Transformation of cover-abundance values in hytosociology and its effect on community similarity. Vegetatio, 39, 97–114.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Kinga Mazurkiewicz-Zapałowicz
    • 1
  • Artur Silicki
    • 1
  • Andrzej Gregorczyk
    • 2
  • Anna Biedunkiewicz
    • 3
  • Maria Wolska
    • 1
  1. 1.Department of Hydrobiology, Ichthyology and Biotechnology of ReproductionWest Pomeranian University of Technology in SzczecinSzczecinPoland
  2. 2.Department of AgronomyWest Pomeranian University of Technology in SzczecinSzczecinPoland
  3. 3.Chair of MycologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland

Personalised recommendations