Skip to main content
Log in

Leaves as “crackers”, biofilm as “peanut butter”: Exploratory use of stable isotopes as evidence for microbial pathways in detrital food webs

  • Short Communication
  • Published:
Oceanological and Hydrobiological Studies

Abstract

Laboratory experiments have shown benthic macroinvertebrates to be capable of consuming heterotrophic organisms which develop on decomposing terrestrial leaves. Questions remain, however, as to whether these microbial biofilms represent a significant energy source to macroinvertebrates within the natural environment compared to that supplied by leaf substrates themselves. A compilation of literature data on field measurements of stable nitrogen isotope ratios for herbivorous macroinvertebrates suggests that assimilation of microbial biofilms may be the principle means by which allochthonous organic matter enters freshwater detrital food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Adams S.M. and Agelovric J.W. 1970. Assimilation of detritus and associated bacteria by three species of estuarine animals. Chesapeake Sci. 11:249–254.

    Article  Google Scholar 

  • Baker J.H. and Bradnam L.A. 1976. The role of bacteria in the nutrition of aquatic detritivores. Oecologia 24:95–104.

    Article  Google Scholar 

  • Baldy V., Chauvet E., Charcosset J.Y. and Gessner M.O. 2002. Microbial dynamics associated with leaves decomposing in the mainstem and floodplain of a large river. Aquat. Microb. Ecol. 28:25–36.

    Article  Google Scholar 

  • Barlocher F. 1985. The role of fungi in the nutrition of stream invertebrates. J. Linnean Soc. Bot. 91:83–94.

    Article  Google Scholar 

  • Barlocher F. and Kendrick B. 1975. Leaf-conditioning by microorganisms. Oceologia 20:359–362.

    Article  Google Scholar 

  • Boak A.C. and Goulder R. 1983. Bacterioplankton in the diet of the calanoid copepod Eurytemora sp. in the Humber Estuary. Mar Biol 73:139–149.

    Article  Google Scholar 

  • Boulton A.J. and Boon P.I. 1991. A review of methodology used to measure leaf litter decomposition in lotic environments: Time to turn over an old leaf? Austral. J. Mar. Freshw. Res. 42:1–43.

    Article  Google Scholar 

  • Caraco N.F., Lampman G., Cole J.J., Limburg K.E., Pace M.L., and Fischer D. 1998. Microbial assimilation of DIN in a nitrogen rich estuary: Implications for food quality and isotope studies. Mar Ecol Prog Ser 167:59–71

    Article  Google Scholar 

  • Cummins K.W. 1974. Structure and function of stream ecosystems. Bioscience 24:631–641.

    Article  Google Scholar 

  • Delwiche C.C. and Steyn P. 1970. Nitrogen isotope fractionation in soils and microbial reactions. Plant Soil 48:57–80.

    Google Scholar 

  • DeNiro C.C. and Epstein S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45:341–353.

    Article  Google Scholar 

  • Findlay S. and Tenore K. 1982. Nitrogen source for a detritivore: Detritus substrate versus associated microbes. Science 218:371–373.

    Article  Google Scholar 

  • Findlay S.E., Meyer J.L. and Smith P.J. 1984. Significance of bacterial biomass in the nutrition of a freshwater isopod (Lirceus sp.). Oecologia 63:38–42.

    Article  Google Scholar 

  • Findlay S.E., Meyer J.L. and Smith P.J. 1986. Contribution of fungal biomass to the diet of a freshwater isopod (Lirceus sp.). Freshw. Biol. 16:377–385.

    Article  Google Scholar 

  • France R. 1994. Nitrogen isotopic composition of marine and freshwater invertebrates. Mar. Ecol. Prog. Ser. 115:205–207.

    Article  Google Scholar 

  • France R. 1995a. Differentiation between littoral and pelagic foodwebs in lakes using stable carbon isotopes. Limnol. Oceanogr. 40:1310–1313.

    Article  Google Scholar 

  • France R.L. 1995b. Source variability in σ 15 N of autotrophs as a potential aid in measuring allochthony to freshwaters. Ecography 18:318–320.

    Article  Google Scholar 

  • France R. 1995c. Carbon-13 enrichment in benthic compared to planktonic algae: Foodweb implications. Mar. Ecol. Prog. Ser. 124:307–312.

    Article  Google Scholar 

  • France R.L. 1996a. Absence or masking of metabolic fractionations of 13 C in a freshwater benthic food web. Freshw. Biol., 36:1–6.

    Article  Google Scholar 

  • France R. 1996b. Ontogenetic shift in crayfish ð13C as a measure of landwater ecotonal coupling. Oecologia 107:239–242.

    Article  Google Scholar 

  • France R.L. 1996c. Scope for use of stable carbon isotopes in discerning the incorporation of forest detritus into aquatic foodwebs. Hydrobiologia 325:219–222.

    Article  Google Scholar 

  • France R.L. 1997a. σ 15 N examination of the Lindeman-Hutchinson-Peters theory of increasing omnivory with trophic height in aquatic foodwebs. Res. Pop. Ecol. 39:121–125.

    Article  Google Scholar 

  • France R.L. 1997b. The importance of beaver lodges in structuring littoral communities in boreal headwater lakes. Can. J. Zool. 75:1009–1013.

    Article  Google Scholar 

  • France R.L. 1997c. Macroinvertebrate colonization of woody debris in Canadian Shield lakes following riparian clearcutting. Conserv. Biol. 11:513–527.

    Article  Google Scholar 

  • France R.L. 1997d. Stable carbon and nitrogen isotopic evidence for ecotonal coupling between boreal forests and fishes. Ecol. Freshw. Fish. 6:78–83.

    Article  Google Scholar 

  • France R. 1998a. Density-weighted ð 13 C analysis of detritivory and algivory in littoral macroinvertebrate communities of boreal headwater lakes. Ann. Zool. Fenn. 35:187–193.

    Google Scholar 

  • France R.L. 1998b. Colonization of leaf litter by littoral macroinvertebrates with reference to successional changes in boreal tree composition expected after riparian clear-cutting. Amer. Midl. Nat. 14:314–324.

    Google Scholar 

  • France R.L. and Peters R.H. 1997. Ecosystem differences in the trophic enrichment of 13 C in aquatic foodwebs. Can. J. Fish. Aquat. Sci. 54:1255–1258.

    Article  Google Scholar 

  • France R., Westcott K., del Giorgio P., Klein G.and Kalff J. 1996. Vertical foodweb structure of freshwater zooplankton assemblages estimated by stable nitrogen isotopes. Res. Pop. Ecol. 38:283–287.

    Article  Google Scholar 

  • France R., del Giorgio P. and Westcott K. 1997. Productivity and heterotrophy influences on zooplankton ð 13 C in northern temperate lakes. Aquat. Microb. Ecol. 12:85–93.

    Article  Google Scholar 

  • France R., Chandler M. and Peters R..1998a. Mapping trophic continua of benthic foodwebs: Body size — σ 15 N relationships. Mar. Ecol. Prog. Ser. 174:301–306.

    Article  Google Scholar 

  • France R., Holmquist J., Chandler M. and Cattaneo A. 1998b. σ15N evidence for nitrogen fixation associated with macroalgae from a seagrass-mangrove-coral reef system. Mar. Ecol. Prog. Ser. 167:297–299.

    Article  Google Scholar 

  • Fry B. 1991. Stable isotope diagrams of freshwater food webs. Ecology 72:2293–2297.

    Article  Google Scholar 

  • Gulis V and Suberkropp K. 2003. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw Biol 48:123–134.

    Article  Google Scholar 

  • Hall R.D. and Meyer J.L. 1998. The trophic significance of bacteria in a detritus based stream food web. Ecology 79:1995–2012.

    Article  Google Scholar 

  • Hicks B.J. and Laboyrie J.E. 1999. Preliminary estimates of mass-loss rates, changes in stable isotope composition, and invertebrate colonization of evergreen and deciduous leaves in a Waikato, New Zealand, stream. New Zeal. J Mar Freshw Res 33:221–232.

    Article  Google Scholar 

  • Kaushik N.K. and Hynes H.B.N. 1971. The fate of dead leaves that fall into streams. Archiv. fur Hydrobiol. 68:465–515.

    Google Scholar 

  • Kostalos M. and Seymour L.R. 1976. Role of microbial enriched detritus in the nutrition of Gammarus minus. Oikos 27:512–516.

    Article  Google Scholar 

  • Lehmann M.F., Bernasconi S.M., Barbieri A., McKenzie J.A. 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta 20:3573–3584.

    Article  Google Scholar 

  • Levinton J.S., Bianchi, T.S. and Stewart, S. 1984. What is the role of particulate organic matter in benthic invertebrate nutrition? Bull. Mar. Sci. 35:270–282.

    Google Scholar 

  • Libes S.M., and Deuser W.G. 1988. The isotope geochemistry of particulate nitrogen in the Peru upwelling area and the Gulf of Maine. Deep Sea Res. Part A 35:517–533.

    Article  Google Scholar 

  • Macko S.A. and Estip M. 1984. Microbial alteration of stable nitrogen and carbon isotopic composition of organic matter. Organ. Geochem. 6:787–790.

    Article  Google Scholar 

  • McGoldrick D.L., Barton D.R., Power M., Scott R.W. and Butler B.J. 2008. Dynamics of bacteria-substrate stable isotope separation: Dependence on substrate availability and implications for aquatic food web studies. Can J Fish Aquat Sci 65:1983–1190.

    Article  Google Scholar 

  • Melillo J.M., Aber J.D., Linkins A.E., Ricca A., Fry B. and Nadelhoffer K.J. 1989. Carbon and nitrogen dynamics along the decay continuum: Plant litter to soil organic matter. Plant Soil 115:189–198.

    Article  Google Scholar 

  • Miluc T. and Toetz D. 1984. Determination of diets of alpine aquatic insects using stable isotopes and gut analyses. Amer. Midl. Natur. 131:146–155.

    Google Scholar 

  • Minshall G.W. 1978. Autotrophy in stream ecosystems. Bioscience 28:767–771.

    Article  Google Scholar 

  • Moran M.A. and Hodson R.E. 1989. Bacterial secondary production on vascular plant detritus: Relationships to detritus composition and degradation rate. Appl. Environ. Microbiol. 55:2178–2189.

    Google Scholar 

  • Odum W.E., Kirk P.W. and Zieman J.C. 1978. Non-protein nitrogen compounds associated with particles of vascular plant detritus. Oikos 32:363–367.

    Article  Google Scholar 

  • Owens N. 1987. Natural variations in σ 15 N in the marine environment. Adv. Mar. Biol. 24:389–451.

    Article  Google Scholar 

  • Peterson B.J. and Fry B. 1987. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Sysem. 18:293–320.

    Article  Google Scholar 

  • Post D.M. 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83:703–718.

    Article  Google Scholar 

  • Rice D.L. and Hanson R.B. 1984. A kinetic model for detritus nitrogen: Role of the associated bacteria in nitrogen accumulation. Bull. Mar. Sci. 35:326–340.

    Google Scholar 

  • Saino T and Hattori A. 1980. 15N natural abundance in oceanic suspended particulate matter. Science 286:2485–2488.

    Google Scholar 

  • Schaefer P. and Ittekkot V. 1993. Seasonal variability of σ15N in settling particles in the Arabian Sea and its paleogeochemical significance. Nature 80:511–513.

    Google Scholar 

  • Steedman R.J. 2000. Effects of experimental clearcut logging on water quality in three small boreal forest lake trout (Salvelinus namaycush) lakes. Can. J. Fish. Aquat. Sci. 57(Suppl. 2):92–96.

    Article  Google Scholar 

  • Steedman R.J. 2003. Littoral fish response to experimental logging around small boreal Shield lakes. North Amer. J. Fish. Manag. 23:392–403.

    Article  Google Scholar 

  • Suberkropp K. and Klug M.J. 1976. Fungi and bacteria associated with leaves during processing in a woodland stream. Ecology 57:707–709.

    Article  Google Scholar 

  • Turner G.L., Bergersen F.J. and Tantala H. 1983. Natural enrichment of 15 N during decomposition of plant material in soil. Soil Biol. Biochem. 15:495–497.

    Article  Google Scholar 

  • Vanderklift M.A. and Ponsard S. 2003. Sources of variation in consumer-diet σ 15 N enrichment: A meta-analysis. Oecologia 20:169–182.

    Article  Google Scholar 

  • Vander Zanden M.J. and Rasmussen J.B. 2001. Variation in σ 15 N and σ 13 C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46:2061–2066.

    Article  Google Scholar 

  • Webster J.R. and Benfield E.F. 1986. Vascular plant breakdown in freshwater ecosystems. Ann. Rev. Ecol. System. 17:567–594.

    Article  Google Scholar 

  • Wellman R.P., Cook F.D. and Krouse H.R. 1968. Nitrogen-15: Microbial alteration of abundance. Science 161:269–270.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. France.

About this article

Cite this article

France, R.L. Leaves as “crackers”, biofilm as “peanut butter”: Exploratory use of stable isotopes as evidence for microbial pathways in detrital food webs. Ocean and Hydro 40, 110–115 (2011). https://doi.org/10.2478/s13545-011-0047-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13545-011-0047-y

Key words

Navigation