Phyto- and zooplankton in fishponds contaminated with heavy metal runoff from a lead-zinc mine

Abstract

This investigation focused on plankton inhabiting fishponds, which previously received mine waters from the lead-zinc mine ‘Matylda’, located in southern Poland (Upper Silesia). The purpose of the investigation was to study the effects of chronic and persistent contamination of fishpond bottom sediments with heavy metals originated from the lead and zinc mine. The phyto-and zooplankton in the four fishponds were dominated by diatoms, green algae and rotifers. Plankton composition of the reference non-contaminated pond was different, since Chrysophytes dominated, and Copepoda were the most numerous among zooplankton. In the contaminated fishponds, we observed teratological forms, both for phyto-and zooplankton species, but only as individuals. Our results showed that planktonic communities had adapted to chronic and persistent heavy metal contamination.

This is a preview of subscription content, log in to check access.

References

  1. Aleksander-Kwaterczak U., Helios-Rybicka E., 2009, Contaminated sediments as a potential source of Zn, Pb, and Cd for a river system in the historical metalliferous ore mining and smelting industry area of South Poland, J. Soils & Sediments, 9:13–22

    Article  Google Scholar 

  2. Aleksander-Kwaterczak U., Ciszewski D., Szarek-Gwiazda E., Waloszek A., Kwandrans J., Wilk-Woźniak E., 2010, Wpływ historycznej działalności kopalni rud Zn-Pb w Chrzanowie na stan środowiska wodnego doliny Matyldy, Górnictwo i Geologia, 5:21–30, (in Polish)

    Google Scholar 

  3. Balistrieri L.S., Seal II R.R., Piatak N.N., Paul B., 2007, Assessing the concentration, speciation, and toxicity of dissolved metals during mixing of acid-mine drainage and ambient river water downstream of the Elizabeth Copper Mine, Appl. Geochem., 22: 930–952

    Article  Google Scholar 

  4. Besser J.M., Brumbaugh W.G., May T.W., Schmitt C.J., 2007, Biomonitoring of lead, zinc, and cadmium in streams draining leadmining and non-mining areas, Southeast Missouri, USA, Environ. Monit. Assess., 129, 227–241

    Article  Google Scholar 

  5. Bielańska-Grajner I., Gładysz A., 2010, Plankotnic rotifers in mining lakes in the Silesian Upland: relationships to environmental parameters, Limnologica, 40: 67–72

    Article  Google Scholar 

  6. Burchardt L., Pawlik-Skowrońska B., 2005, Zakwity sinic — konkurencja międzygatunkowa i środowiskowe zagrożenie, Wiad. Bot., 49: 39–49 (in Polish)

    Google Scholar 

  7. Celewicz-Gołdyn S., 2005, —Abundance of Dinobryon divergens Imhoff in the eutrophic lake Rosnowskie Duże in 2002–2003, Rocz. Akad. Rol. w Poznaniu, CCCLXXIII, Bot.-Stec. 9: 23–30

    Google Scholar 

  8. Chapman P.M., 2007, Determining when contamination is pollution — weight of evidence determinations for sediments and effluents, Environ. Int., 33: 492–501

    Article  Google Scholar 

  9. Ciszewski D., 1998, Channel processes as a factor controlling accumulation of heavy metals in river bottom sediments: consequences for pollution monitoring (Upper Silesia, Poland), Environ. Geol., 36, 45–54

    Article  Google Scholar 

  10. Ciszewski D., 2004, Pollution of the Mała Panew River sediments by heavy metals: effect of changes in river bed morphology, Pol. J Environ. Stud., 13: 589–595

    Google Scholar 

  11. Ciszewski D., Czajka A., Błażej S., 2008, Rapid migration of heavy metals and 137Cs in alluvial sediments of the Upper Odra River valley, Poland, Environ. Geol., 55: 1577–1586

    Article  Google Scholar 

  12. Ciszewski D., Aleksander-Kwaterczak U., Kubsik U., Kwandrans J., Pociecha A. et al., 2010, —Interdyscyplinarne badania skutków zanieczyszczenia wód i osadów stawów i cieków doliny Matyldy — próba klasyfikacji, In: Ludwikowska-Kędzia M., Zieliński A., (Ed.) Badania interdyscyplinarne — przeszłośĆ, teraźniejszośĆ, przyszłośĆ nauk przyrodniczych. Inst. Geog. UJK Kielce, 40–43 (in Polish)

  13. Clement B., Devaux A., Perrodin Y., Danjean M., Ghidini-Fatus M., 2004, Assessment of sediment ecotoxicity and genotoxicity in freshwater laboratory microcosms, Ecotoxicology, 13: 323–333

    Article  Google Scholar 

  14. Dziengo-Czaja M., Koss J., Matuszak A., 2008, Teratological forms of diatoms (Bacillariophyceae) as indicators of water pollution in the western part of Puck Bay (southern Balitic Sea), Ocean. Hydrob. Stud., 37: 119–132

    Article  Google Scholar 

  15. Förstner U., Wittman G.T., 1983, Metal Pollution in the Aquatic Environment, Springer, Berlin, Heidelberg, pp. 486

    Google Scholar 

  16. Jak R.G., Maas J.I., Scholten M.C.T., 1996, Evaluation of laboratory derived toxic effect concentrations of a mixture of metals by testing freshwater plankton communities in enclosures, Water Res., 30: 1215–1227

    Article  Google Scholar 

  17. Krupa D., 1981, Ceratium hirundinella (O.F. Muller) Bergh in two trophically different lakes. II. Development and morphological variation of active forms and cysts, Ekol. Pol.-Pol. J Ecol., 29: 571–583

    Google Scholar 

  18. Ligęza S., Wilk-Woźniak E., 2011, The occurrence of Euglena pascheri and Lepocinclic ovum bloom in an oxbow Lake in southern Poland under extreme environmental conditions. Ecological indicators, 11: 925–929

    Article  Google Scholar 

  19. Linnik P.M., 2000, Zinc, lead and cadmium speciation in Dniepr waterbodies. Lake reservoir management, 5: 261–270

    Article  Google Scholar 

  20. Lund J.W.G., Kipling G., Le Cren E.D., 1958, The inverted microscope method of estimating algae numbers and the statistical basis of estimation by counting. Hydrobiologia, 11: 143–170

    Article  Google Scholar 

  21. Morin S., Dong T.T., Drabin A., Coynel A., Herlory O. et al., 2008, Long-term survey of heavy metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, southwest France, Environ. Pollut., 151: 532–542

    Article  Google Scholar 

  22. Pasternak K., 1971, The content of copper, zinc and manganese in the water of the dam reservoir at Goczałkowice and of several other reservoirs, Acta Hydrobiol., 13: 159–177.

    Google Scholar 

  23. Paulsson M., Nystrom B., Blanck, H., 2000, Long-term toxicity of zinc to bacteria and algae in periphyton communities from the river Gota Alv, based on a microcosm study, Aquatic Toxic., 47: 243–257

    Article  Google Scholar 

  24. Pawlik-Skowrońska B., 2001, Phytochelatin productions in freshwater alga Stigeoclonium in response to heavy metals contained in mining water; effects of some environmental factors, Aquatic Toxic., 52: 241–249

    Article  Google Scholar 

  25. Pawlik-Skowrońska B., 2002, Tajemnice odporności glonów i sinic na toksyczne metale ciężkie, Kosmos, 51:175–184

    Google Scholar 

  26. Pawlik-Skowrońska B., 2002b, Correlations between toxic Pb effects and production of Pb-induced thiol peptides in the microalga Stichococcus bacillaris, Environ. Pollut., 119: 119–127

    Article  Google Scholar 

  27. PN-EN ISO 17294-1, 2007, Water quality — Application of mass spectrometry with inductively coupled plasma (ICP-MS), 40 pp

  28. Pociecha A., Higgins T., McCarthy T.K., 2010, A preliminary study on the plankton assemblages of Lough Derg (Ireland) during a winter-spring season. Ocean. Hydrob. Stud., 39: 145–154

    Article  Google Scholar 

  29. Sarma S.S.S., Azuara-Garcia R., Nandini S., 2007a, Combined effects of zinc and algal food on the competition between planktonie rotifers, Anuraeopsis fissa and Brachionus Rubens (Rotifera), Aquatic ecology, 41: 631–638

    Article  Google Scholar 

  30. Sarma S. S. S., Peredo-Alvarez V. M., Nandini S., 2007b, Comparative study of the sensitivities of neonates and adults of selected cladoceran (Cladocera: Crustacea) species to acute toxicity stress, J Environ. Sci. Heal. A, 42: 1449–1452

    Article  Google Scholar 

  31. Shubert E., Rusu A-M., Bartok K., Moncrieff C.B., 2001, Distribution and abundance of edaphic algae adapted to highly acidic, metal rich soils, Nova Hedwigia, 123: 411–425

    Google Scholar 

  32. Smolyakov B.S., Ryzhikh S.B., Bortnikova S.B., Saeva O.P., Chernova N.Yu., 2010, Behavior of metals (Cu, Zn, and Cd) in the initial stage of water system contamination: Effect of pH and suspended particles, Appl. Geochem., 25: 1153–1161

    Article  Google Scholar 

  33. Smolyakov B.S., Ryzhikh A.P., Romanov R.E., 2010b, The fate of Cu, Zn, and Cd in the initial stage of water system contamination: the effect of phytoplankton activity, J Hazard. Mater., 184: 819–825

    Article  Google Scholar 

  34. Szuwarzyński M., 2000, Zakłady Górnicze “Trzebionka” S.A. 1950–2000, Przedsiębiorstwo Doradztwa Technicznego „Kadra”, Trzebinia (in Polish).

    Google Scholar 

  35. Vymazal J., 1995, Algae and element cycling in wetlands. CRC Press/Lewis Publisher, Boca Raton, Florida, pp. 689

    Google Scholar 

  36. Wilk-Woźniak E., 2009, Zmiany populacyjne w zbiorowiskach glonów planktonowych oraz ich strategie życiowe w warunkach ekosystemów wodnych sztucznie zmienionych (Changes in phytoplankton communities and the life strategies of planktonic algae in artificially changed aquatic ecosystems). Studia Naturae 55, IOP PAN, Kraków, pp. 132 (in Polish with English summ.)

    Google Scholar 

  37. Wilk-Woźniak E., Marshall H.G., 2009, Diel changes in phytoplankton composition and abundance in the surface and subsurface strata from a shallow eutrophic pond, Int. Rev. Hydrobiol., 94: 29–39

    Article  Google Scholar 

  38. Wołowski K., Grabowska M., 2007, Trachelomonas species as the main component of the euglenophyte community in the Siemianówka Reservoir (Narew River, Poland), Ann. Limnol. — Int. J. Lim., 43: 207–218.

    Article  Google Scholar 

  39. Wołowski K., Turnau K., Henriques F. S., 2008, The algal flora of an extremely acidic, metal-rich drainage pond of Săo Domingos pyrite mine (Portugal), Cryptogamie Algol., 29: 313–324.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elżbieta Wilk-Woźniak.

About this article

Cite this article

Wilk-Woźniak, E., Pociecha, A., Ciszewski, D. et al. Phyto- and zooplankton in fishponds contaminated with heavy metal runoff from a lead-zinc mine. Ocean and Hydro 40, 77 (2011). https://doi.org/10.2478/s13545-011-0044-1

Download citation

Key words

  • aquatic ecosystems
  • heavy metals
  • industrial impact
  • lead
  • plankton
  • zinc