Composition and density of plant-associated invertebrates in relation to environmental gradients and hydrological connectivity of wetlands

Abstract

Frequency of occurrence and intensity of the raised water stage determine the structure of invertebrates in the wetland ecosystems of wetland river floodplains. In order to assess the relationships in a regulated, lowland river of moderate climate, samples of water and invertebrates inhabiting submerged shoots of reed Phragmites australis Trin Ex. Stued. were taken from the middle section of the Słupia River and five of its oxbow lakes.

The wetlands differed in hydrological activity (type of connection with the river). Redundancy Analysis (RDA) revealed that hydrological connectivity accounted for 37% of the total invertebrate variance, physico-chemical conditions — 21%, while the trophic state only — 7%. Linear regression showed that the highest species richness was observed in oxbow lakes connected to the river with one arm. Diversity and species evenness increased with the increasing hydrological connectivity. The study revealed that plant-associated invertebrates inhabiting wetlands can be the main source for the reconstruction of biodiversity after floods.

This is a preview of subscription content, log in to check access.

References

  1. Amoros C., Bornette G., 2002, Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshw. Biol., 47: 761–776

    Article  Google Scholar 

  2. Amoros C., Roux A.L., 1988, Interaction between water bodies within the floodplain of large rivers: function and development of connectivity. Minstersche Geographische Arbeiten, 29: 125–130

    Google Scholar 

  3. American Public Health Association (APHA) 1989, Standard methods for the examination of water and wastewater. 17Th ed. American Public Health Association (APHA), Washington D. C., USA

    Google Scholar 

  4. Baffico G.D., 2001, Variations in the periphytic community structure and dynamics of Lake Nahuel Huapi (Patagonia, Argentina). Hydrobiologia, 455: 79–85

    Article  Google Scholar 

  5. Brönmark C., 1989, Interactions between epiphytes, macrophytes and freshwater snails: a review. J. Moll. Stud., 55: 299–311

    Article  Google Scholar 

  6. Cataneo A., 1987, Periphyton in like of different trophy. Can. J. Fish. Aquat. Sci., 44: 296–303

    Article  Google Scholar 

  7. Clausen B., Biggs B.J.F, 1997, Relationships between benthic biota and hydrological indices in New Zealand streams. Freshw. Biol., 38: 327–342

    Article  Google Scholar 

  8. Drake J.A., 1984, Species Aggregation: The influence of detritus in a benthic invertebrates community. Hydrobiology, 112: 109–115

    Article  Google Scholar 

  9. Dermott R.M., 1988, Zoobenthic distribution and biomass in the Turkey lakes. Can. J. Fish. Aquat. Sci. 45: 107–114

    Article  Google Scholar 

  10. Dynesius M., Nilsson C., 1994, Fragmentation and flow regulation of river systems in the northern 3rd of the world. Science, 266: 753–762

    Article  Google Scholar 

  11. Gallardo B., 2009, Aquatic community patterns across environmental gradients in a Mediterranean floodplain and their application to ecosystem restoration. PhD dissertation, Zaragosa-Girona

  12. Gallardo B., Garcia M., Cabezas A., Gonzalez E., Gonzalez M., et al. 2008, Macroinvertebrate patterns along environmental gradients and hydrological connectivity within a regulated river-floodplain. Aquat. Sci., 70: 248–258

    Article  Google Scholar 

  13. Gasith A., Resh V.H., 1999, Streams in Mediterranean climate regions: Abiotic influences and biotic responses to predictable seasonal events. Annu. Rev. Ecol. Syst., 30: 51–81

    Article  Google Scholar 

  14. Gibbins C.N., Dilks C.F., Malcolm R., Soulsby C., Juggins S., 2001, Invertebrate communities and hydrological variation in Cairngorm mountain streams. Hydrobiologia 462: 205–219

    Article  Google Scholar 

  15. Glińska-Lewczuk K., 2009, Water quality dynamics of oxbow lakes in young glacial landscape of NE Poland in relation to their hydrological connectivity. Ecol. Eng., 35: 25–37

    Article  Google Scholar 

  16. Gotelli N.J., Entsminger G.L., 2004. EcoSim: Null models software for ecology. Version 7. Acquired Intelligence Inc. & Kesey-Bear. Jericho, VT 05465.

  17. Hann B.J., 1991, Invertebrate grazer-periphyton interactions in a eutrophic marsh pond. Freshwat. Biol., 26: 87–96

    Article  Google Scholar 

  18. Hill B.H., Herlihy A.T., Kaufmann P.R., Stevenson R.J., McCormick F.H., Johnson C.B., 2000, The use of periphyton assemblage data as an index of biotic integrity. J. N. Am. Benthol. Soc., 19: 50–67

    Article  Google Scholar 

  19. Heino J., 2000, Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry. Hydrobiologia, 418: 229–242

    Article  Google Scholar 

  20. Jentsch A., Kreyling J., Beierkuhnlein C., 2007, A new generation of climate-change experiments: events, not trends. Fron. Ecol. Environ., 5: 365–374

    Article  Google Scholar 

  21. Kajak Z., 1988. Considerations on benthos abundance in freshwaters, its factors and mechanisms. Int. Revue ges. Hydrobiol. 73: 5–19

    Article  Google Scholar 

  22. Kasprzak K., Niedbała W., 1981, Biocenotic indices used for the analysis of quantitative data. [in]: Methods used in soil zoology, Eds. Górny M., Grüm L., PWN, Warszawa, pp. 397–402 (in Polish)

    Google Scholar 

  23. Legendre P., Troussellier M., 1988, Aquatic heterotrophic bacteria — modelling in the presence of spatial auto-Correlation. Limnol. Oceanogr., 33: 1055–1067

    Article  Google Scholar 

  24. Macioszczyk A., 1987, Hydrogeochemia. Wyd. Geol. Warszawa, pp. 475

  25. Mallory M.L., Blancher P.X., Weatherhead P.J., McNicol D.K., 1994, Presence or absence of fish as a cue to macroinvertebrate abundance in boreal wetlands. Hydrobiologia, 280: 345–351

    Article  Google Scholar 

  26. McCollum E.W., Crowder L.B., McCollum S.A., 1998, Complex interactions of fish, snails and littoral zone periphyton. Ecology, 79: 1980–1994

    Article  Google Scholar 

  27. Marshall J.C., Sheldon F., Thorns M., Choy S., 2006, The macroinvertebrate fauna of an Australian dryland river: spatial and temporal patterns and environmental relationships. Aust. J. Mar. Fresh. Res., 57: 61–74

    Article  Google Scholar 

  28. Mundy C.J., Hann B.J., 1997, Snail-periphyton interactions in a prairie wetland. University Field Station (Delta Marsh). Annual Report, 31: 40–52

    Google Scholar 

  29. Obolewski K., 2011, Macrozoobenthos patterns along environmental gradients and hydrological connectivity of oxbow lakes. Ecol. Eng., 37: 796–805

    Article  Google Scholar 

  30. Obolewski K., Glińska-Lewczuk K., Kobus S., 2009, The effect of flow on the macrozoobenthos structure in a re-opened oxbow lake — a case study of the Słupia river, northern Poland. [in:] Ecohydrology of Surface and Groundwater Dependent Systems: Concepts, Methods and Recent Developments. Eds. Thoms M., Heal K., Bøgh E., Chambel A. and Smakhtin V., IAHS Publ., 328: 13–23

  31. Piesik Z., Obolewski K., 2004, Fouling fauna (zooperiphyton) inhabiting reed Phragmites australis (CAV.) Trin. ex STEUD. in lake Wicko Przymorskie. Baltic Coastal Zone, 8: 81–94

    Google Scholar 

  32. Peres-Neto P.R., Legendre P., Dray S., Borcard D., 2006, Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology, 87: 2614–2625

    Article  Google Scholar 

  33. Poff N.L., Allan J.D., Bain M.B., Karr J.R., Prestegaard K.L., et al. 1997, The natural flow regime. Bioscience, 47, 769–784

    Article  Google Scholar 

  34. Poff N.L., Ward J.V., 1989, Implications of stream flow variability and predictability for lotic community structure -a regional-analysis of stream flow patterns. Can. J. Fish. Aquat. Sci. 46: 1805–1818

    Article  Google Scholar 

  35. R Development Core Team, 2007, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  36. Rasmussen, J.B., 1988, Littoral zoobenthic biomass in lakes, and its relationship to physical, chemical, and trophic factors. Can. J. Fish. Aquat. Sci. 45: 1436–1447

    Article  Google Scholar 

  37. Sandin L. 2003, Benthic macroinvertebrates in Swedish streams: community structure, taxon richness, and environmental relations. Ecography, 26: 269–282

    Article  Google Scholar 

  38. Sheldon F., Boulton A.J., Puckridge J.T., 2002, Conservation value of variable connectivity: aquatic invertebrate assemblages of channel and floodplain habitats of a central Australian arid-zone river, Cooper Creek. Biol. Conserv., 103: 13–31

    Article  Google Scholar 

  39. Taniguchi H., Nakano S., Tokeshi M., 2003, Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshwat. Biol., 48: 718–728

    Article  Google Scholar 

  40. Ter Braak C.J.F., Šmilauer P., 2002, CANOCO Reference manual and CanoDraw for Windows User’s guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, New York

    Google Scholar 

  41. Tockner K., Pennetzdorfer D., Reiner N., Schiemer F., Ward J.V., 1999a, Hydrological connectivity and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria). Freshwat. Biol., 41: 521–535

    Article  Google Scholar 

  42. Tockner K., Schiemer F., Baumgartner C., Kum G., Weigand E., et al. 1999b, The Danube restoration project: Species diversity along habitat gradients in the floodplain system. Regulated Rivers 15: 245–258

    Article  Google Scholar 

  43. Tockner K., Malard F., Ward J.V., 2000, An extension of the flood pulse concept. Hydrological Processes 14: 2861–2883

    Article  Google Scholar 

  44. Van der Brink F.W.B, Van der Velde G., Buijse A.D., Klink A.G., 1996, Biodiversity of the Lower Rhine and Meuse river-floodplains: its significance for ecological management. Neth. J. Aquatic. Ecol., 30: 129–149

    Article  Google Scholar 

  45. Ward J.V., 1998, Riverine landscapes: Biodiversity patterns, disturbance regimes, and aquatic conservation. Biol. Conserv., 83: 269–278

    Article  Google Scholar 

  46. Ward J.V., Tockner K., Arscott D.B., Claret C., 2002, Riverine landscape diversity. Freshwat. Biol., 47: 517–539

    Article  Google Scholar 

  47. Wissmar R.C., 1991, Forest detritus and cycling of nitrogen in a mountain lake. Can. J. Forest. Research, 21: 990–998

    Article  Google Scholar 

  48. Woodcock T.S., Huryn A.D., 2007, The response of macroinvertebrate production to a pollution gradient in a headwater stream. Freshwat. Biol., 52: 177–196

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Krystian Obolewski.

About this article

Cite this article

Obolewski, K. Composition and density of plant-associated invertebrates in relation to environmental gradients and hydrological connectivity of wetlands. Ocean and Hydro 40, 52 (2011). https://doi.org/10.2478/s13545-011-0041-4

Download citation

Key words

  • Invertebrates
  • oxbow lakes
  • Słupia River
  • Redundancy Analysis
  • variance partitioning