Skip to main content
Log in

Studies concerning heterotrophic bacteria decomposing macromolecular compounds at two marine beaches

  • Original Research Paper
  • Published:
Oceanological and Hydrobiological Studies

Abstract

The potential capability to decompose macromolecular compounds was confirmed in heterotrophic bacteria isolated from two sandy beaches located on the southern Baltic coast. Proteolytic bacteria were the most numerous group, whereas lipolytic organisms were rare among bacteria inhabiting the studied beaches. All studied physiological groups of bacteria were considerably more numerous in the sand of the beach subject to stronger anthropopressure. The differences in bacteriological parameters across the horizontal profile of the beaches were noted. In both studied beaches a higher number of bacteria able to decompose macromolecular compounds were recorded in the surface as compared to the subsurface sand layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnosti C., Jorgensen B., Sagemann J., Tramdrup T., 1998, Temperature dependence of microbial degradation of organic matter in marine sediment: polysaccharide hydrolysis, oxygen consumption, and sulphate reduction, Mar. Ecol. Prog. Ser., 165: 59–70

    Article  Google Scholar 

  • Billen G., Fontigny A., 1987, Dynamics of a phaeocystis — dominated spring bloom in Belgian coastal waters, II. Bacterioplankton dynamics, Mar. Ecol. Prog. Ser., 37: 249–257

    Article  Google Scholar 

  • Boetius A., 1995, Microbial hydrolytic enzyme activities in deep-sea sediments Helgoland, Mar. Res., 49: 177–187

    Google Scholar 

  • Boucher G., Chamroux S., 1976, Bacteria and meiofauna in an experimental sand ecosystems. I. Material and preliminary results, J. Exp. Mar. Biol. Ecol., 24: 237–249

    Article  Google Scholar 

  • Brown A.C., Mclachlan A., 1990, Ecology of Sandy Shores, Elsevier, Amsterdam, pp. 328

    Google Scholar 

  • Gomes D.N., Cavalacanti M.A., Fernandes M.J., Lima D.M., Passavante L.Z., 2008, Filamentus fungi isolated from sand and water of “Bairro Novo” and “Casa Caida” beaches, Olinda, Pernambuco, Brazil, Brazil. J. Biol., 68: 577–582

    Article  Google Scholar 

  • Haque A.M., Szymelfenig M., Węcławski M., 1996, The sandy littoral zoobentos of the Polish Baltic coast, Oceanologia, 38: 361–378

    Google Scholar 

  • Helmke E., Weyland H., 1986, Effect of hydrostatic pressure and temperature on the activity and synthessis of chitinases of Antarctic Ocean bacteria, Mar. Biol., 91: 1–7

    Article  Google Scholar 

  • Halliwell G., 1962, Methods of enzymatic analysis [in:] Cellulose, Ed. Bergmayer, H.V., Academic Press, New York-London, 64–71

    Google Scholar 

  • Heymans J.J., McLachlan A., 1996, Carbon budget and network analysis of a high energy beach/surf-zone ecosystems, Estuar. Coast. Shelf Sci., 43: 485–505

    Article  Google Scholar 

  • Incera M., Cividanes S.P., López J., Costas R., 2003, Role of hydrodynamic conditions on quantity and biochemical composition of sediment organic matter in sandy intertidal sediments ( NW Atlantic coast, Iberian Peninsula), Hydrobiologia, 497: 39–51

    Article  Google Scholar 

  • Jackson C.R., Foreman C.M., Sinsabaugh R.L., 1995, Microbial enzyme activities as indicator of organic matter processing rates in a lake Erie coastal wetland, Fresh. Biol., 34: 329–342

    Article  Google Scholar 

  • Jacobsen T.R., Azam F., 1984, Role of bacteria in copoepoded fecal pellet decomposition. Colonization, growth rates and mineralization, Bull. Mar. Sci., 35: 495–502

    Google Scholar 

  • Jędrzejczak M.F., 1999, The degradation of stranded carrion on a Baltic Sea sandy beach, Oceanol. Stud., 3/4: 109–141

    Google Scholar 

  • Jocz J., 2010, Dynamic concentration of protein and chlorophyll in sand beach of diffrent anthropopressure, Master’s thesis, AP Słupsk pp. 74

  • Jones J.G., 1971, Studies on freswater bacteria factors which influence the population and its activity, J. Ecol., 59: 593–613

    Article  Google Scholar 

  • Khiyama H.M., Makemson J.C., 1973, Sand beach bacteria: enumeration and characterization, Appl. Microbiol., 26: 293–297

    Google Scholar 

  • Kiersztyn B., Siuda W., Chróst R., 2002, Microbial ectoenzyme activity: useful parameters for characterizing the trophic conditions of lakes, Pol. J. Environ Stud., 1: 367–373

    Google Scholar 

  • Kolm H.E., Correa M.F.M., 1994, Spatial distribution and temporal variability of saprophytic bacteria on the sandy beach of Pontal, du Sul, Parna State, Brazil, Arq. Biol. Tecnol., 37: 391–402

    Google Scholar 

  • Koop K., Griffiths C.L., 1982, The relative significance of bacteria meio and macrofauna on exposed sand beach, Mar. Biol., 66: 295–300

    Article  Google Scholar 

  • Koop K., Newell R.C., Lucas M.I., 1982, Microbial regeneration of nutrients from the decomposition of macrophyte debris on the shore, Mar. Ecol. Prog. Ser., 9: 91–96

    Article  Google Scholar 

  • Kramarska, R., Uscinowicz, Sz., Zachowicz, J., Przezdziecki, P., Warzocha, J., Netzel J., Janusz J., 2003, Identification of submarine deposit drifts to artificial swelling, Department of Marine in Słupsk (in Polish)

  • Krstulović N., Solić M., 1988, Distribution of proteolytic, amylolytic and lipolytic bacteria in the Kastela Bay, Acta Adria., 29: 75–82

    Google Scholar 

  • Lingappa Y., Lockwood J.L., 1962, Chitin media for selective isolation and culture of actinomycetes, Phytopathology, 52: 317–323

    Google Scholar 

  • McLachlan A., Jarmillo E., 1995, Zonation on sandy beaches, Oceanogr. Mar. Ecol. Ann. Rev., 33: 305–335

    Google Scholar 

  • Malam T., Raberg S., Fell T., Carlson P., 2004, Effects by beaches cleaning on litoral water quality microbial food web and macro faunal biodiversity, Est. Coast. Shelf Sci., 60: 339–347

    Article  Google Scholar 

  • Mallet C., Debroas D., 1999, Relations between organic matter and bacterial proteolytic activity in sediment surface layers of a eutrophic lake (Lake Aydat, Puy de Dôme, France), Arch. Hydrobiol., 39: 145–156

    Google Scholar 

  • Martinez, J., Azam F., 1993, Periplasmic aminopeptidase and alkaline phosphatase activities in a marine bacterium: implications for substrate processing in the sea, Mar. Ecol. Prog. Ser., 92: 89–97

    Article  Google Scholar 

  • Martinez J., Smith D.C., Steward D.F., Azam F., 1996, Variability in ectohydrolytic enzyme actives of pelagic marine bacteria and its significance for substrate processing in the sea, Aqua. Microbial Ecol., 10: 223–229

    Article  Google Scholar 

  • Misic C., Harriague A.C., 2007, Enzymatic activity and organic substrates on sandy beach of the Ligurian Sea (NW Mediterranean) influenced by anthropogenic pressure, Aqua. Microbial. Ecol., 47: 239–251

    Article  Google Scholar 

  • Montagna P.A., 1982, Sampling design and enumeration statistics for bacteria extracted from marine sediments, Appl. Environ. Microbiol., 4: 1366–1372

    Google Scholar 

  • Mudryk Z., Donderski W., 1997, The occurrence of heterotrophic bacteria decomposing some macromolecular compounds in shallow estuarine lakes, Hydrobiologia, 342/343: 71–78

    Article  Google Scholar 

  • Mudryk Z., Donderski W., Skórczewski P., Walczak M., 1999, Neustonic and planktonic bacteria isolated from a brackish lake Gardno, Pol. Arch. Hydrobiol., 46: 121–129

    Google Scholar 

  • Mudryk Z., Podgórska B., Ameryk A., 2001, Bacteriological characterisation of a Baltic sandy beach in summer, Ecohydrol. & Hydrobiol., 4: 503–509

    Google Scholar 

  • Mudryk. Z., Podgórska B., 2006, Enzymatic activity bacterial strains isolated from marine beach, Pol. J. Ecol., 15: 441–448

    Google Scholar 

  • Mudryk Z., Podgórska B., 2007, Culturable microorganisms in sandy beaches in south Baltic Sea, Pol. J. Ecol., 55: 221–231

    Google Scholar 

  • Nair S., Bharathi L., 1980, Heterotrophic bacterial population in tropical sandy beaches, Mahas. Bull. Nat. Inst. of Oceanogr., 13: 261–267

    Google Scholar 

  • Newell S.Y., Fallon R.D., 1982, Bacterial productivity in the water column and sediments of the Georgia (USA) coastal zone estimates via direct counting and parallel measurements of thymidine incorporation, Mar. Ecol., 8: 33–46

    Google Scholar 

  • Novitsky J.A., MacSween M.C., 1989, Microbiology of a high energy beach sediment: evidence for an active and growing community, Mar. Ecol. Prog. Ser., 52: 71–75

    Article  Google Scholar 

  • Olańczuk — Neyman K., Jankowska K., 1998, Bacteriological investigations of the sandy beach ecosystem in Sopot, Oceanologia, 40: 137–151

    Google Scholar 

  • Patel A.B., Fukami K., Nishijama T., 2000, Regulation of seasonal variability of aminopeptidase activities in surface and bottom waters of Uranouchi Inlet, Japan, Aqua. Microbiol. Ecol., 21: 139–147

    Article  Google Scholar 

  • Piechocka A., 2010, Dynamic concentration of carbohydrates and lipids in sand beach of diffrent anthropopressure, Master’s thesis, AP Słupsk pp. 60

  • Podgórska B., Mudryk Z., 2003, Distribution and enzymatic activity of heterotrophic bacteria decomposing selected macromolecular compounds in a Baltic Sea beach, Estuar. Coast. Shelf Sci., 56: 539–546

    Article  Google Scholar 

  • Podgórska B., Mudryk Z., 2007, Physiological properties of bacteria inhabiting polluted and unpolluted marine sandy beaches (Southern Baltic Sea), Pol. J. Ecol., 55: 15–26

    Google Scholar 

  • Podgórska B., Mudryk Z., Skórczewski P., 2008, Abundance and production of bacteria in a marine beach (southern Baltic Sea) in summer, Pol. J. Ecol., 56: 405–414

    Google Scholar 

  • Pugh K.B., Andrews A.R., Gibbs C.F., Davis S.J., Floodgate G.D., 1974, Some physical, chemical and microbiological characteristics of two beaches of Anglesey, J. Exp. Mar. Biol. Ecol., 15: 305–333

    Article  Google Scholar 

  • Rodil I.F., Lastra M., 2004, Environmental factors affecting benthic macrofauna along a gradient of intermediate sandy beches in northern Spain, Estuar. Coast. Shelf Sci., 61: 37–44.

    Article  Google Scholar 

  • Rodriguez J.G., Lastra M., Lopez J., 2003, Meiofauna distribution along a gradient of sandy beaches, Estuar. Coast. Shelf Sci., 58: 63–69

    Article  Google Scholar 

  • Uraban — Malinga B., Opaliński K.W., 1999, Vertical zonation of the total, biotic and abiotic oxygen consumption in a Baltic sandy beach, Oceanol. Stud., 28: 85–96

    Google Scholar 

  • Uraban — Malinga B., Opaliński K.W., 2001, Interstitial community oxygen consumption in a Baltic sandy beaches: horizontal zonation, Oceanologia, 43: 455–468

    Google Scholar 

  • Wehr J.D., Petersen J., Findlay S., 1999, Influence of three contrasting detritial carbon sources on planktonic bacterial metabolism in a mesotrophic lake, Microbiol. Ecol., 37: 23–35

    Article  Google Scholar 

  • Worm J., Jensen L.E., Hansen T.S., Sondergaard M., Nybroe O., 2000, Interactions between proteolytic and non-proteolytic Pseudomonas fluorescens affect protein degradation in a model community, FEMS Microbiol. Ecol., 32: 103–109

    Article  Google Scholar 

  • Yamamoto N., Lopez G., 1985, Bacterial abundance in relation to surface area and organic content of marine sediments, J. Exp. Mar. Biol. Ecol., 90: 209–220

    Article  Google Scholar 

  • Zawadzka, E., 1996, Litho — morphodynamics in the vicinity of small ports of the Polish Central Coast, [in:] Partnership of the Coastal Management, Eds. Taussik J., Mitchel J., Samara, Publ. Limited, Cardigan GB. pp. 353–360

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Perliński.

About this article

Cite this article

Mudryk, Z., Skórczewski, P., Perliński, P. et al. Studies concerning heterotrophic bacteria decomposing macromolecular compounds at two marine beaches. Ocean and Hydro 40, 74–83 (2011). https://doi.org/10.2478/s13545-011-0032-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13545-011-0032-5

Key words

Navigation