Communities of heterotrophic protists (protozoa) in the near-bottom zone of the Gdańsk Basin

  • Krzysztof RychertEmail author
Original Research Paper


Biomass and generic diversity of heterotrophic protists (protozoa) were studied in the near-bottom zone at five stations located in the inner Gulf of Gdańsk and in offshore waters during June 2002. The highest protozoan biomass was observed in the inner Gulf of Gdańsk and close to the mouth of the Vistula River. Protozoan biomass decreased offshore. In well-oxygenated waters heterotrophic flagellates constituted 39–51%, of the protozoan biomass, ciliates constituted 18–25%, and heterotrophic dinoflagellates 29–39% of the protozoan biomass. These findings confirmed previous studies that showed that a high abundance of heterotrophic dinoflagellates is a distinct feature of the Gulf of Gdańsk. At one station located in the Gdańsk Deep, where the near-bottom zone was anoxic, the contribution of heterotrophic flagellates decreased to 18% and ciliates’ share increased to 82% of the protozoan biomass. No dinoflagellates were observed in the anoxic zone.

Key words

heterotrophic protists protozoa near-bottom zone Gdańsk Basin 


  1. Arndt H., 1991, On the importance of planktonic protozoans in the eutrophication process of the Baltic Sea, Int. Revue ges. Hydrobiol., 76: 387–396CrossRefGoogle Scholar
  2. Azam F., Fenchel T., Field J. D., Gray J. S., Meyer-Reil L. A., Thingstad F., 1983, The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser., 10: 257–263CrossRefGoogle Scholar
  3. Beers J. R., Stewart G. L., 1969, The vertical distribution of microzooplankton and some ecological observations, J. Cons. Int. Explor. Mer., 33: 30–44Google Scholar
  4. Boikova E., 1984, Ecological character of protozoans (Ciliata, Flagellata) in the Baltic Sea, Ophelia, Suppl. 3: 23–32Google Scholar
  5. Børsheim K. Y., Bratbak G., 1987, Cell volume to carbon conversion factors for a bacteriovorous Monas sp. enriched from seawater, Mar. Ecol. Prog. Ser., 36: 171–175CrossRefGoogle Scholar
  6. Bralewska J. M., Witek Z., 1995, Heterotrophic dinoflagellates in the ecosystem of the Gulf of Gdańsk, Mar. Ecol. Prog. Ser., 117: 241–248CrossRefGoogle Scholar
  7. Caron D. A., 1983, Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures, Appl. Envir. Microbiol., 46,2: 491–498Google Scholar
  8. Caron D. A., Swanberg N. R., 1990, The ecology of planktonic sarcodines, Aquat. Sci., 3: 147–180Google Scholar
  9. Dolan J. R., Coats D. W., 1991, Changes in fine-scale vertical distributions of ciliate microzooplankton related to anoxia in Chesapeake Bay waters, Mar. Microb. Food Webs, 5: 81–93Google Scholar
  10. Edler L. (ed.), 1979, Recommendations on methods for marine biological studies, Baltic Mar. Biol. Publs. 5Google Scholar
  11. Foissner W., Berger H., 1996, A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in river, lakes, and waste waters, with notes on their ecology, Freshw. Biol., 35: 375–482Google Scholar
  12. Fenchel T., 1969, The ecology of marine microbentos. IV. Structure and function of the benthic ecosystem, Ophelia, 6: 1–182Google Scholar
  13. Fenchel T., Kristensen L. D., Rasmussen L., 1990, Water column anoxia: vertical zonation of planktonic protozoa, Mar. Ecol. Prog. Ser., 62: 1–10CrossRefGoogle Scholar
  14. Kirchman D. L., Williams P. J. Le B., 2000, Introduction [in:] Microbial ecology of the oceans, Ed. Kirchman D. L., New York, Wiley-Liss, pp. 1–11Google Scholar
  15. Kopacz M., Witek Z., 1987, Seasonal changes in composition and biomass of zooplankton in the coastal zone of the Gulf of Gdańsk, Reports of the Sea Fisheries Institute 1984–1985: 44–45, (in Polish)Google Scholar
  16. Mackiewicz T., 1991, Composition and seasonal changes of nanoflagellates in the Gdańsk Basin (Southern Baltic), Acta Ichthyol. Piscat., 21Suppl.: 125–134Google Scholar
  17. Marshall S. M., 1969, Protozoa. Order: Tintinnida, Cons. Int. Explor. Mer, Zooplankton Sheets: 117–127Google Scholar
  18. Putt M., Stoecker D., 1989, An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters, Limnol. Oceanogr., 34: 1097–1103CrossRefGoogle Scholar
  19. Rogerson A, Laybourn-Parry J., 1992, The abundance of marine naked amoebae in the water column of the Clyde Estuary, Est. Coast. Shelf Sci., 34: 187–196CrossRefGoogle Scholar
  20. Rogerson A., Anderson O. R., Vogel C., 2003, Are planktonic naked amoebae predominately floc associated or free in the water column? J. Plankton Res., 25: 1359–1365CrossRefGoogle Scholar
  21. Rychert K., 2004, The size structure of Mesodinium rubrum population in the Gdańsk Basin, Oceanologia, 46: 439–444Google Scholar
  22. Setälä O., 1991, Ciliates in the anoxic deep water layer of the Baltic, Arch. Hydrobiol., 122: 483–492Google Scholar
  23. Setälä O., Kivi K., 2003, Planktonic ciliates in the Baltic Sea in summer: distribution, species association and estimated grazing impact, Aquat. Microb. Ecol., 32: 287–297CrossRefGoogle Scholar
  24. Sherr E. B., Sherr B. F., 1988, Role of microbes in pelagic food webs: A revised concept, Limnol. Oceanogr., 33: 1225–1227CrossRefGoogle Scholar
  25. Sherr E. B., Sherr B. F., 1993, Preservation and storage of samples for enumeration of heterotrophic protists [in:] Handbook of methods in Aquatic Microbial Ecology, Eds. Kemp P. F., Sherr B. F., Sherr E. B., Cole J. J., Boca Raton, Levis Publishers, pp. 207–212Google Scholar
  26. Sherr E. B., Sherr B. F., 2002, Significance of predation by protists in aquatic microbial food webs, Antonie Leeuwenhoek, 81: 293–308CrossRefGoogle Scholar
  27. Smetaček V., 1981, The annual cycle of protozooplankton in the Kiel Bight, Mar. Biol., 63: 1–11CrossRefGoogle Scholar
  28. Strüder-Kypke M. C., Montagnes D. J. S., 2002, Development of web-based guides to planktonic protests, Aquat. Microb. Ecol., 27: 203–207CrossRefGoogle Scholar
  29. Suzuki T., Taniguchi A., 1998, Standing crop and vertical distribution of four groups of marine planktonic ciliates in relation to phytoplankton chlorophyll a, Mar. Biol., 132: 375–382CrossRefGoogle Scholar
  30. Thomsen H. A. (ed.), 1992, Plankton i de indre danske farvande. Analyse af forekomsten af alger og heterotrofe protister (ekskl. ciliater) i Kattegat, Havforskning fra Miløstyrelsen, 11, pp. 331, (in Danish)Google Scholar
  31. Urrutxurtu I., Orive E., de la Sota A., 2003, Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay), Est. Coast. Shelf Sci., 57: 1169–1182CrossRefGoogle Scholar
  32. Utermöhl H., 1931, Neue Wege in der quantitativen Erfassung des Planktons, Verh. Int. Verein. Theor. Angew. Limnol., 5: 567–596Google Scholar
  33. Verity P. G., Langdon C., 1984, Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay, J. Plankton Res., 6: 859–867CrossRefGoogle Scholar
  34. Witek M., 1998, Annual Changes of Abundance and Biomass of Planktonic Ciliates in the Gdańsk Basin, Southern Baltic, Internat. Rev. Hydrobiol, 83: 163–182CrossRefGoogle Scholar
  35. Witek Z., 1995, Biological production and its utilization within a marine ecosystem in the Western Gdańsk Basin, Gdynia, Sea Fisheries Institute, pp. 145, (in Polish)Google Scholar
  36. Wrzesińska-Kwiecień M., Mackiewicz T., 1995, Protozooplankton of the Pomeranian Bay (Southern Baltic), Bull. Sea Fish. Inst., 136: 89–95Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  1. 1.Pomeranian University in SłupskSłupskPoland

Personalised recommendations