Skip to main content

Phosphate exchange across the sediment-water interface under oxic and hypoxic/anoxic conditions in the southern Baltic Sea

Abstract

Benthic fluxes of phosphate and phosphorus distribution in sediments from the southern Baltic Sea were investigated in spring and autumn in 2005 and 2007–2010. Strong spatial variability of phosphate fluxes was observed across the sediment-water interface. The highest values of phosphate flux from sediment (up to 37 μmol m−2 h−1), resulting from the high mineralization rate of organic matter and rapid phosphorus turnover due to macrofaunal activity and hydrodynamic conditions, were observed in the shallow area at depths ranging from 50 to 69 m. The rate of phosphate exchange in the transportation and accumulation bottom area with the water depth ≥72 m was several times lower (2.12–6.22 μmol m−2 h−1). In continuously hypoxic or anoxic sediments, phosphorus was preserved in the refractory organic form, and sediments were depleted of redox-dependent phosphorus forms. In shallow area with well oxygenated near-bottom water, phosphorus was present mainly in the calcium-bound form.

This is a preview of subscription content, access via your institution.

References

  • Alkal T., 1972, The relationship between the physical properties of underwater sediments that affect bottom reflections, Mar. Geol., 13: 251–266

    Article  Google Scholar 

  • Anschutz P., Zhong S., Sundby B., Mucci A., Gobeil Ch., 1998, Burial efficiency of phosphorus and the geochemistry of iron in continental margin sediments, Limnol. Oceanogr., 43: 53–64

    Article  Google Scholar 

  • Bally G., Mesnage V., Deloffre J., Clarisse O., Lafite R., Dupont J-P., 2004, Chemical characterization of porewaters in an intertidal mudflat of the Seine estuary: relationship to erosion-deposition cycles, Marine Pollution Bulletin, 49: 163–173

    Article  Google Scholar 

  • Berner R.A., 1977, Stoichiometric models for nutrient regeneration in anoxic sediment, Limnol. Oceanogr., 22: 781

    Article  Google Scholar 

  • Boström B., Andersen J.M., Fleischer S., Jansson M., 1988, Exchange of phosphorus across the sediment-water interface, Hydrobiologia, 170: 229–244

    Article  Google Scholar 

  • Boudreau B.P., 1996, The diffusive tortuosity of fine-grained unlithified sediments, Geochim. Cosmochim. Acta, 60: 3139–3142

    Article  Google Scholar 

  • Burska D., Szymelfenig M., 2005, The upwelling of nutrients in the coastal area of the Hel Peninsula (the Baltic Sea), Ocean. Hydrob. Stud., 34: 75–96

    Google Scholar 

  • Carman R., Wulff F., 1989, Adsorption capacity of phosphorus in Baltic Sea sediments, Estuarine, Coastal and Shelf Science, 29: 447–456

    Article  Google Scholar 

  • Chapelle A., 1995, A preliminary model of nutrient cycling in sediments of a Mediterranean lagoon, Ecological Modelling, 136: 131–147

    Article  Google Scholar 

  • Conley D.J., Stockenberg A., Carman R., Johnstone R.W., Rahm L., Wulff F., 1997, Sediment-water nutrient fluxes in the Gulf of Finland, Baltic Sea. Estuarine, Coastal and Shelf Science, 45: 591–598

    Article  Google Scholar 

  • Conley D.J., Humborg C., Rahm L., Savchuk O., Wulff F., 2002, Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry, Environmental Science and Technology, 36: 5315–5320

    Article  Google Scholar 

  • De Jonge V.N., Villerius L.A., 1989, Possible role of carbonate dissolution in estuarine phosphate dynamics, Limnol. Oceanogr., 34: 332–340

    Article  Google Scholar 

  • De Montigny C., Prairie Y., 1993, The relative importance of biological and chemical processes in the release of phosphorus from a highly organic sediment, Hydrobiologia, 253: 141–150

    Article  Google Scholar 

  • Denis L., Grenz Ch., 2003, Spatial variability in oxygen and nutrient fluxes at the sediment-water interface on the continental shelf in the Gulf of Lions (NW Mediterranean), Oceanol. Acta, 26: 373–389

    Article  Google Scholar 

  • Feistel R., Nausch G., Matthäus W., Hagen E., 2003, Temporal and spatial evolution of the Baltic deep water renewal in spring 2003, Oceanologia, 45: 623–642

    Google Scholar 

  • Frankowski L., Bolałek J., 1997, Phosphate desorption from sediments in the Pomeranian Bay (Southern Baltic), Oceanol. Stud., 1: 205–214

    Google Scholar 

  • Friedrich J., Dinke, C., Friedl G., Pimenov N., Wijsman J., et al., 2002. Benthic nutrient cycling and diagenetic pathways in the north-western Black Sea, Estuarine, Coastal and Shelf Science, 54: 369–383

    Article  Google Scholar 

  • Gomez E., Durillon C., Rofes G., Picot B., 1999, Phosphate adsorption and release from aerobic sediments of brackish lagoons: pH, O 2 and loading influence, Wat. Res., 33: 2437–2447

    Article  Google Scholar 

  • Graca B., Witek Z., Burska D., Białkowska I., Łukawska-Matuszewska K., Bolałek J., 2006, Pore water phosphate and ammonia below the permanent halocline in the south-eastern Baltic Sea and their benthic fluxes under anoxic conditions, J. Mar. Sys., 63: 141–154

    Article  Google Scholar 

  • Graca B., 2009, The dynamics of nitrogen and phosphorus transformations at the sediment-water interface in the Gulf of Gdańsk, Gdańsk, University of Gdańsk, pp 165 (in Polish)

    Google Scholar 

  • Grandel S., Rickert D., Schlüter M., Wallmann K., 2000, Pore-water distribution and quantification of diffusive benthic fluxes of silicic acid, nitrate and phosphate in surface sediments of the deep Arabian Sea, Deep-Sea Res II, 47: 2707–2734

    Article  Google Scholar 

  • Heiskanen A-S., Haapala J., Gundersen K., 1998, Sedimentation and pelagic retention of particulate C, N and P in the coastal northern Baltic Sea, Estuarine, Coastal and Shelf Science, 46: 703–712

    Article  Google Scholar 

  • HELCOM, 2007, Baltic Sea Action Plan, Kraków, Poland, pp 101

    Google Scholar 

  • IMGW, 2009, Cruise Reports of Institute of Meteorology and Water Management, Maritime Branch in Gdynia, http://baltyk.imgw.gdynia.pl/en/

  • Jensen H.S., Andersen F. è., 1992, Importance of temperature, nitrate and pH for phosphate release from aerobic sediemnts of four shallow, eutrophic lakes, Limnol. Oceanogr., 37: 577–589

    Article  Google Scholar 

  • Jensen H.S., Thamdrup, B., 1993, Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction, Hydrobiologia, 253: 47–59

    Article  Google Scholar 

  • Jonsson P., Carman R., Wulff F., 1990, Laminated sediments in the Baltic — A tool for evaluating nutrient mass balances, Ambio, 19: 152–158

    Google Scholar 

  • Karlson K., Bonsdorff E., Rosenberg R., 2007, The impact of benthic macrofauna for nutrient fluxes from Baltic Sea sediments, Ambio, 36: 1–7

    Article  Google Scholar 

  • Klump J.V., Martens C.S., 1981, Biogeochemical cycling in an organic rich coastal marine basin: II. Nutrient sediment-water exchange processes, Geochim. Cosmochim. Acta, 45: 101–121

    Article  Google Scholar 

  • Knapp E.P., Herman J.S., Mills A.L., Hornberger, G.M., 2002, Changes in the sorption capacity of Coastal Plain sediments due to redox alteration of mineral surfaces, Applied Geochemistry, 17: 387–398

    Article  Google Scholar 

  • Koop K., Boynton W.R., Wulff F., Carman, R., 1990, Sediment-water oxygen and nutrient exchanges along a depth gradient in the Baltic Sea, Marine Ecology Progress Series, 63: 65–77

    Article  Google Scholar 

  • Koroleff F., 1976, Determination of phosphorus. [in:] Methods of seawater analysis, Ed. Grasshoff, K., Verlag Chemie, Weinheim, New York, pp 116–126

    Google Scholar 

  • Kowalewski M., 2005, The influence of the Hel upwelling (Baltic Sea) on nutrient concentrations and primary production — the results of an ecohydrodynamic model, Oceanologia, 47: 567–590

    Google Scholar 

  • Kowalewski M., Ostrowski M., 2005, Coastal up- and down-welling in the southern Baltic, Oceanologia, 47: 453–475

    Google Scholar 

  • Kramer J.M., Brockman U.H., Warwick R.M., 1994, Manual of sampling and analytical procedures. [in:] Tidal Estuaries, Ed. Balkema, A.A., Rotterdam, Brookfield, pp. 137–138

    Google Scholar 

  • Kristensen E., 1985, Oxygen and inorganic nitrogen exchange in a Nereis virens (Polychaeta) bioturbated sediment-water system, J. Coast. Res., 1: 109–16

    Google Scholar 

  • Kristensen E., 1984, Effect of natural concentrations on nutrient exchange between a polychaete burrow in estuarine sediment and the overlying water, J. Exp. Mar. Bioi. Ecol., 75: 171–90

    Article  Google Scholar 

  • Kruk-Dowgiałło L., Szaniawska A., 2008, Gulf of Gdańsk and Puck Bay. [in:] Ecology of Baltic Coastal Waters. Ed. Schiewer U., Ecological Studies, vol. 197. Springer-Verlag Berlin Heidelberg

  • Lavery P.S., Oldham C.E., Ghisalberti M., 2001, The use of Fick’s First Law for predicting porewater nutrient fluxes under diffusive conditions, Hydrological Processes, 15: 2435–2451

    Article  Google Scholar 

  • Li Y-H., Gregory S., 1974, Diffusion of ions in sea water and in deep-sea sediments, Geochim. Cosmochim. Acta, 38: 703–714

    Article  Google Scholar 

  • Louchouarn P., Lucotte M., Duchemin E., de Vernal A., 1997, Early diagenetic processes in recent sediments of the Gulf of St-Lawrence: phosphorus, carbon and iron burial rates, Mar. Geol., 139: 181–200

    Article  Google Scholar 

  • Łukawska-Matuszewska K., Bolałek J., 2008, Spatial distribution of phosphorus forms in sediments in the Gulf of Gdańsk (southern Baltic Sea), Continental Shelf Research, 28: 977–990

    Article  Google Scholar 

  • Łukawska-Matuszewska K., Janas U., Rzemykowska H., Burska D., 2010, Oxygen and biogenic substances exchange across sediment-water interface — the role of macrofauna, Presented at IX Conference „Chemistry, geochemistry and marine environmental protection”, 15th April 2010, Sopot, Poland

  • Łysiak-Pastuszak E., 1995; Tlen. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 1994 roku, Eds. Cyberska, B., Lauer, Z., Trzosińska, A., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 216 (in Polish)

    Google Scholar 

  • Łysiak-Pastuszak E., 1997, Związki fosforu. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 1996 roku, Eds. Cyberska, B., Lauer, Z., Trzosińska, A., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 216 (in Polish)

    Google Scholar 

  • Łysiak-Pastuszak E., 1998, Tlen i siarkowodór. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 1997 roku, Eds. Cyberska, B., Lauer, Z., Trzosińska, A., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 269 (in Polish)

    Google Scholar 

  • Łysiak-Pastuszak E., 2000, Okresowe zmiany parametrów fizycznych i składników chemicznych wód południowego Bałtyku, PhD Thesis, University of Gdańsk, Gdynia, Poland (in Polish)

    Google Scholar 

  • Łysiak-Pastuszak E., 2004, Tlen i siarkowodór. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 2001 roku, Eds. Krzymiński, B.W., Łysiak-Pastuszak, E., Miętus, M., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 228 (in Polish)

    Google Scholar 

  • Łysiak-Pastuszak E., Drgas N., 2001, Tlen i siarkowodór. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 1999 roku, Eds. Krzymiński, B.W., Łysiak-Pastuszak, E., Miętus, M., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 300 (in Polish)

    Google Scholar 

  • Łysiak-Pastuszak E., Drgas N., 2002, Tlen i siarkowodór. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 2000 roku, Eds. Krzymiński, B.W., Łysiak-Pastuszak, E., Miętus, M., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 244 (in Polish)

    Google Scholar 

  • McManus J., Berelson W.M., Coalf K.H., Johnson K.S., Kilgore T.E., 1997, Phosphorus regeneration in continental margin sediments, Geochim. Cosmochim. Acta, 61: 2891–2907

    Article  Google Scholar 

  • Miltner A., Emeis K., 2001, Terrestrial organic matter in surface sediments of the Baltic Sea, Northwest Europe, as determined by CuO oxidation, Geochim. Cosmochim. Acta, 65: 1285–1299

    Article  Google Scholar 

  • Moran M. A., Pomeroy L. R., Sheppard E. S., Atkinson L. P., Hodson R. E., 1991, Distribution of terrestrially derived organic matter on the southeastern U.S. continental shelf, Limnol. Oceanogr., 36: 1134–1149

    Article  Google Scholar 

  • Mort H. P., Slomp C. P., Gustafsson B. G., Andersen T. J., 2010, Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions, Geochim. Cosmochim. Acta, 74: 1350–1362

    Article  Google Scholar 

  • Mortimer R. J. G., Davey J. T., Krom M. D., Watson P. G., Frickers P. E., Clifton R. J., 1999, The effect of macrofauna on porewater profiles and nutrient fluxes in the intertidal zone of the Humber Estuary, Estuarine, Coastal and Shelf Science, 48: 683–699

    Article  Google Scholar 

  • Olenin S., 1997, Benthic zonation of the eastern Gotland Basin, Baltic Sea, Netherlands Journal of Aquatic Ecology, 30: 265–282

    Article  Google Scholar 

  • Parsons T.R., Maaita Y., Lalli C.M., 1985, A manual of chemical and biological methods for seawater analysis, Pergamon Press, pp. 235

  • Pitkänen H., Lehtoranta J., Peltonen H., Laine A., Kotta J., et al., 2003, Benthic release of phosphorus and its relation to environmental conditions in the estuarial Gulf of Finland, Baltic Sea, in the early 2000s, Proc. Estonian Acad. Sci. Biol. Ecol., 52: 173–192

    Google Scholar 

  • Redfield A.S., Ketchum B.H., Richards F.A., 1963, The influence of organisms on the composition of seawater. [in:] The Sea, Ed. Hill, M.N., London, Wiley-Interscience, pp. 26–77

    Google Scholar 

  • Rhoads D., Aller R., Goldhaber M. B., 1977, The influence of colonizing benthos on physical properties and chemical diagenesis of the estuarine seafloor. [in:] Ecology of Marine Benthos, Ed. Coull, B. C., University of South Carolina Press, Columbia, pp. 113–138

    Google Scholar 

  • Santschi P., Höhener P., Benoit G., 1990, Chemical processes at the sediment water interface, Mar. Chem., 30: 269–315

    Article  Google Scholar 

  • Sharples J., Moore C.M., Rippeth T.P., Hooligan P.M., Hydes D.J., et al., 2001, Phytoplankton distribution and survival in the thermocline, Limnol. Oceanogr., 46: 486–496

    Article  Google Scholar 

  • Søndergaard M., Jensen J.P., Jeppesen E., 2003, Role of sediment and internal loading of phosphorus in shallow lakes, Hydrobiologia, 506–509: 135–145

    Article  Google Scholar 

  • Staniszewski A., Lejman A., Pempkowiak J., 2001, Horizontal and vertical distribution of lignin in surface sediments of the Gdańsk Basin, Oceanologia, 43(4); 421–439

    Google Scholar 

  • Sundareshwar P.V., Morris J.T., 1999, Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient, Limnol. Oceanogr., 44: 1693–1701

    Article  Google Scholar 

  • Tessenow U., 1972, Losungs-, diffusions-Sorptionsprozesse in der Oberschicht von Seesdeimenten. Ein Langzeitexperiment unter aeroben und anaeroben Bedingungen im Fließgleichgewicht, Arch. Hydrobiol., 38: 353–398 (in German)

    Google Scholar 

  • Trzosińska A., 1994, Tlen. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 1993 roku, Eds. Cyberska, B., Lauer, Z., Trzosińska, A., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 219 (in Polish)

    Google Scholar 

  • Trzosińska A., 1996, Tlen i siarkowodór. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 1995 roku, Eds. Cyberska, B., Lauer, Z., Trzosińska, A., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 228 (in Polish)

    Google Scholar 

  • Trzosińska A., 1997, Tlen i siarkowodór. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 1996 roku, Eds. Cyberska, B., Lauer, Z., Trzosińska, A., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 221 (in Polish)

    Google Scholar 

  • Trzosińska A., 1998, Sole biogeniczne. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 1997 roku, Eds. Cyberska, B., Lauer, Z., Trzosińska, A., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 269 (in Polish)

    Google Scholar 

  • Trzosińska, A., 1999, Tlen i siarkowodór. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 1998 roku, Eds. Cyberska, B., Lauer, Z., Trzosińska, A., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 288 (in Polish)

    Google Scholar 

  • Virtasalo, J.J., Kohonen, T., Vuorinen, I., Huttula, T., 2005, Sea bottom in the Archipelago Sea, northern Baltic Sea — Implications for phosphorus remineralization at the sediment surface, Mar. Geol., 224: 103–122

    Article  Google Scholar 

  • Westrich, J.T., Berner, R.A., 1984, The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested, Limnol. Oceanog., 29: 236–249

    Article  Google Scholar 

  • Yamada, H., Kayama, M., 1987, Distribution and dissolution of several forms of phosphorus in coastal marine sediments, Oceanologica Acta, 10: 311–321

    Google Scholar 

  • Yingst J.Y., Rhoads D.C., 1980, The role of bioturbation in the enhancement of bacterial growth rates in marine sediments. [in:] Marine Benthic Dynamics, Eds. Tenore, K.L., Coull, B.C., University of South Carolina Press, Columbia, pp. 407–421

    Google Scholar 

  • Zabel, M., Dahmke, A., Schulz, H.D., 1998, Regional distribution of diffusive phosphate and silicate fluxes through the sediment-water interface: the eastern South Atlantic, Deep-Sea Research, 45: 277–300

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Łukawska-Matuszewska.

About this article

Cite this article

Łukawska-Matuszewska, K., Burska, D. Phosphate exchange across the sediment-water interface under oxic and hypoxic/anoxic conditions in the southern Baltic Sea. Ocean and Hydro 40, 57–71 (2011). https://doi.org/10.2478/s13545-011-0017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13545-011-0017-4

Key words

  • phosphorus
  • hypoxia
  • benthic fluxes
  • eutrophication
  • sediments
  • Baltic Sea