Phosphate exchange across the sediment-water interface under oxic and hypoxic/anoxic conditions in the southern Baltic Sea

Abstract

Benthic fluxes of phosphate and phosphorus distribution in sediments from the southern Baltic Sea were investigated in spring and autumn in 2005 and 2007–2010. Strong spatial variability of phosphate fluxes was observed across the sediment-water interface. The highest values of phosphate flux from sediment (up to 37 μmol m−2 h−1), resulting from the high mineralization rate of organic matter and rapid phosphorus turnover due to macrofaunal activity and hydrodynamic conditions, were observed in the shallow area at depths ranging from 50 to 69 m. The rate of phosphate exchange in the transportation and accumulation bottom area with the water depth ≥72 m was several times lower (2.12–6.22 μmol m−2 h−1). In continuously hypoxic or anoxic sediments, phosphorus was preserved in the refractory organic form, and sediments were depleted of redox-dependent phosphorus forms. In shallow area with well oxygenated near-bottom water, phosphorus was present mainly in the calcium-bound form.

This is a preview of subscription content, access via your institution.

References

  1. Alkal T., 1972, The relationship between the physical properties of underwater sediments that affect bottom reflections, Mar. Geol., 13: 251–266

    Article  Google Scholar 

  2. Anschutz P., Zhong S., Sundby B., Mucci A., Gobeil Ch., 1998, Burial efficiency of phosphorus and the geochemistry of iron in continental margin sediments, Limnol. Oceanogr., 43: 53–64

    Article  Google Scholar 

  3. Bally G., Mesnage V., Deloffre J., Clarisse O., Lafite R., Dupont J-P., 2004, Chemical characterization of porewaters in an intertidal mudflat of the Seine estuary: relationship to erosion-deposition cycles, Marine Pollution Bulletin, 49: 163–173

    Article  Google Scholar 

  4. Berner R.A., 1977, Stoichiometric models for nutrient regeneration in anoxic sediment, Limnol. Oceanogr., 22: 781

    Article  Google Scholar 

  5. Boström B., Andersen J.M., Fleischer S., Jansson M., 1988, Exchange of phosphorus across the sediment-water interface, Hydrobiologia, 170: 229–244

    Article  Google Scholar 

  6. Boudreau B.P., 1996, The diffusive tortuosity of fine-grained unlithified sediments, Geochim. Cosmochim. Acta, 60: 3139–3142

    Article  Google Scholar 

  7. Burska D., Szymelfenig M., 2005, The upwelling of nutrients in the coastal area of the Hel Peninsula (the Baltic Sea), Ocean. Hydrob. Stud., 34: 75–96

    Google Scholar 

  8. Carman R., Wulff F., 1989, Adsorption capacity of phosphorus in Baltic Sea sediments, Estuarine, Coastal and Shelf Science, 29: 447–456

    Article  Google Scholar 

  9. Chapelle A., 1995, A preliminary model of nutrient cycling in sediments of a Mediterranean lagoon, Ecological Modelling, 136: 131–147

    Article  Google Scholar 

  10. Conley D.J., Stockenberg A., Carman R., Johnstone R.W., Rahm L., Wulff F., 1997, Sediment-water nutrient fluxes in the Gulf of Finland, Baltic Sea. Estuarine, Coastal and Shelf Science, 45: 591–598

    Article  Google Scholar 

  11. Conley D.J., Humborg C., Rahm L., Savchuk O., Wulff F., 2002, Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry, Environmental Science and Technology, 36: 5315–5320

    Article  Google Scholar 

  12. De Jonge V.N., Villerius L.A., 1989, Possible role of carbonate dissolution in estuarine phosphate dynamics, Limnol. Oceanogr., 34: 332–340

    Article  Google Scholar 

  13. De Montigny C., Prairie Y., 1993, The relative importance of biological and chemical processes in the release of phosphorus from a highly organic sediment, Hydrobiologia, 253: 141–150

    Article  Google Scholar 

  14. Denis L., Grenz Ch., 2003, Spatial variability in oxygen and nutrient fluxes at the sediment-water interface on the continental shelf in the Gulf of Lions (NW Mediterranean), Oceanol. Acta, 26: 373–389

    Article  Google Scholar 

  15. Feistel R., Nausch G., Matthäus W., Hagen E., 2003, Temporal and spatial evolution of the Baltic deep water renewal in spring 2003, Oceanologia, 45: 623–642

    Google Scholar 

  16. Frankowski L., Bolałek J., 1997, Phosphate desorption from sediments in the Pomeranian Bay (Southern Baltic), Oceanol. Stud., 1: 205–214

    Google Scholar 

  17. Friedrich J., Dinke, C., Friedl G., Pimenov N., Wijsman J., et al., 2002. Benthic nutrient cycling and diagenetic pathways in the north-western Black Sea, Estuarine, Coastal and Shelf Science, 54: 369–383

    Article  Google Scholar 

  18. Gomez E., Durillon C., Rofes G., Picot B., 1999, Phosphate adsorption and release from aerobic sediments of brackish lagoons: pH, O 2 and loading influence, Wat. Res., 33: 2437–2447

    Article  Google Scholar 

  19. Graca B., Witek Z., Burska D., Białkowska I., Łukawska-Matuszewska K., Bolałek J., 2006, Pore water phosphate and ammonia below the permanent halocline in the south-eastern Baltic Sea and their benthic fluxes under anoxic conditions, J. Mar. Sys., 63: 141–154

    Article  Google Scholar 

  20. Graca B., 2009, The dynamics of nitrogen and phosphorus transformations at the sediment-water interface in the Gulf of Gdańsk, Gdańsk, University of Gdańsk, pp 165 (in Polish)

    Google Scholar 

  21. Grandel S., Rickert D., Schlüter M., Wallmann K., 2000, Pore-water distribution and quantification of diffusive benthic fluxes of silicic acid, nitrate and phosphate in surface sediments of the deep Arabian Sea, Deep-Sea Res II, 47: 2707–2734

    Article  Google Scholar 

  22. Heiskanen A-S., Haapala J., Gundersen K., 1998, Sedimentation and pelagic retention of particulate C, N and P in the coastal northern Baltic Sea, Estuarine, Coastal and Shelf Science, 46: 703–712

    Article  Google Scholar 

  23. HELCOM, 2007, Baltic Sea Action Plan, Kraków, Poland, pp 101

    Google Scholar 

  24. IMGW, 2009, Cruise Reports of Institute of Meteorology and Water Management, Maritime Branch in Gdynia, http://baltyk.imgw.gdynia.pl/en/

  25. Jensen H.S., Andersen F. è., 1992, Importance of temperature, nitrate and pH for phosphate release from aerobic sediemnts of four shallow, eutrophic lakes, Limnol. Oceanogr., 37: 577–589

    Article  Google Scholar 

  26. Jensen H.S., Thamdrup, B., 1993, Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction, Hydrobiologia, 253: 47–59

    Article  Google Scholar 

  27. Jonsson P., Carman R., Wulff F., 1990, Laminated sediments in the Baltic — A tool for evaluating nutrient mass balances, Ambio, 19: 152–158

    Google Scholar 

  28. Karlson K., Bonsdorff E., Rosenberg R., 2007, The impact of benthic macrofauna for nutrient fluxes from Baltic Sea sediments, Ambio, 36: 1–7

    Article  Google Scholar 

  29. Klump J.V., Martens C.S., 1981, Biogeochemical cycling in an organic rich coastal marine basin: II. Nutrient sediment-water exchange processes, Geochim. Cosmochim. Acta, 45: 101–121

    Article  Google Scholar 

  30. Knapp E.P., Herman J.S., Mills A.L., Hornberger, G.M., 2002, Changes in the sorption capacity of Coastal Plain sediments due to redox alteration of mineral surfaces, Applied Geochemistry, 17: 387–398

    Article  Google Scholar 

  31. Koop K., Boynton W.R., Wulff F., Carman, R., 1990, Sediment-water oxygen and nutrient exchanges along a depth gradient in the Baltic Sea, Marine Ecology Progress Series, 63: 65–77

    Article  Google Scholar 

  32. Koroleff F., 1976, Determination of phosphorus. [in:] Methods of seawater analysis, Ed. Grasshoff, K., Verlag Chemie, Weinheim, New York, pp 116–126

    Google Scholar 

  33. Kowalewski M., 2005, The influence of the Hel upwelling (Baltic Sea) on nutrient concentrations and primary production — the results of an ecohydrodynamic model, Oceanologia, 47: 567–590

    Google Scholar 

  34. Kowalewski M., Ostrowski M., 2005, Coastal up- and down-welling in the southern Baltic, Oceanologia, 47: 453–475

    Google Scholar 

  35. Kramer J.M., Brockman U.H., Warwick R.M., 1994, Manual of sampling and analytical procedures. [in:] Tidal Estuaries, Ed. Balkema, A.A., Rotterdam, Brookfield, pp. 137–138

    Google Scholar 

  36. Kristensen E., 1985, Oxygen and inorganic nitrogen exchange in a Nereis virens (Polychaeta) bioturbated sediment-water system, J. Coast. Res., 1: 109–16

    Google Scholar 

  37. Kristensen E., 1984, Effect of natural concentrations on nutrient exchange between a polychaete burrow in estuarine sediment and the overlying water, J. Exp. Mar. Bioi. Ecol., 75: 171–90

    Article  Google Scholar 

  38. Kruk-Dowgiałło L., Szaniawska A., 2008, Gulf of Gdańsk and Puck Bay. [in:] Ecology of Baltic Coastal Waters. Ed. Schiewer U., Ecological Studies, vol. 197. Springer-Verlag Berlin Heidelberg

  39. Lavery P.S., Oldham C.E., Ghisalberti M., 2001, The use of Fick’s First Law for predicting porewater nutrient fluxes under diffusive conditions, Hydrological Processes, 15: 2435–2451

    Article  Google Scholar 

  40. Li Y-H., Gregory S., 1974, Diffusion of ions in sea water and in deep-sea sediments, Geochim. Cosmochim. Acta, 38: 703–714

    Article  Google Scholar 

  41. Louchouarn P., Lucotte M., Duchemin E., de Vernal A., 1997, Early diagenetic processes in recent sediments of the Gulf of St-Lawrence: phosphorus, carbon and iron burial rates, Mar. Geol., 139: 181–200

    Article  Google Scholar 

  42. Łukawska-Matuszewska K., Bolałek J., 2008, Spatial distribution of phosphorus forms in sediments in the Gulf of Gdańsk (southern Baltic Sea), Continental Shelf Research, 28: 977–990

    Article  Google Scholar 

  43. Łukawska-Matuszewska K., Janas U., Rzemykowska H., Burska D., 2010, Oxygen and biogenic substances exchange across sediment-water interface — the role of macrofauna, Presented at IX Conference „Chemistry, geochemistry and marine environmental protection”, 15th April 2010, Sopot, Poland

  44. Łysiak-Pastuszak E., 1995; Tlen. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 1994 roku, Eds. Cyberska, B., Lauer, Z., Trzosińska, A., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 216 (in Polish)

    Google Scholar 

  45. Łysiak-Pastuszak E., 1997, Związki fosforu. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 1996 roku, Eds. Cyberska, B., Lauer, Z., Trzosińska, A., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 216 (in Polish)

    Google Scholar 

  46. Łysiak-Pastuszak E., 1998, Tlen i siarkowodór. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 1997 roku, Eds. Cyberska, B., Lauer, Z., Trzosińska, A., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 269 (in Polish)

    Google Scholar 

  47. Łysiak-Pastuszak E., 2000, Okresowe zmiany parametrów fizycznych i składników chemicznych wód południowego Bałtyku, PhD Thesis, University of Gdańsk, Gdynia, Poland (in Polish)

    Google Scholar 

  48. Łysiak-Pastuszak E., 2004, Tlen i siarkowodór. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 2001 roku, Eds. Krzymiński, B.W., Łysiak-Pastuszak, E., Miętus, M., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 228 (in Polish)

    Google Scholar 

  49. Łysiak-Pastuszak E., Drgas N., 2001, Tlen i siarkowodór. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 1999 roku, Eds. Krzymiński, B.W., Łysiak-Pastuszak, E., Miętus, M., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 300 (in Polish)

    Google Scholar 

  50. Łysiak-Pastuszak E., Drgas N., 2002, Tlen i siarkowodór. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 2000 roku, Eds. Krzymiński, B.W., Łysiak-Pastuszak, E., Miętus, M., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 244 (in Polish)

    Google Scholar 

  51. McManus J., Berelson W.M., Coalf K.H., Johnson K.S., Kilgore T.E., 1997, Phosphorus regeneration in continental margin sediments, Geochim. Cosmochim. Acta, 61: 2891–2907

    Article  Google Scholar 

  52. Miltner A., Emeis K., 2001, Terrestrial organic matter in surface sediments of the Baltic Sea, Northwest Europe, as determined by CuO oxidation, Geochim. Cosmochim. Acta, 65: 1285–1299

    Article  Google Scholar 

  53. Moran M. A., Pomeroy L. R., Sheppard E. S., Atkinson L. P., Hodson R. E., 1991, Distribution of terrestrially derived organic matter on the southeastern U.S. continental shelf, Limnol. Oceanogr., 36: 1134–1149

    Article  Google Scholar 

  54. Mort H. P., Slomp C. P., Gustafsson B. G., Andersen T. J., 2010, Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions, Geochim. Cosmochim. Acta, 74: 1350–1362

    Article  Google Scholar 

  55. Mortimer R. J. G., Davey J. T., Krom M. D., Watson P. G., Frickers P. E., Clifton R. J., 1999, The effect of macrofauna on porewater profiles and nutrient fluxes in the intertidal zone of the Humber Estuary, Estuarine, Coastal and Shelf Science, 48: 683–699

    Article  Google Scholar 

  56. Olenin S., 1997, Benthic zonation of the eastern Gotland Basin, Baltic Sea, Netherlands Journal of Aquatic Ecology, 30: 265–282

    Article  Google Scholar 

  57. Parsons T.R., Maaita Y., Lalli C.M., 1985, A manual of chemical and biological methods for seawater analysis, Pergamon Press, pp. 235

  58. Pitkänen H., Lehtoranta J., Peltonen H., Laine A., Kotta J., et al., 2003, Benthic release of phosphorus and its relation to environmental conditions in the estuarial Gulf of Finland, Baltic Sea, in the early 2000s, Proc. Estonian Acad. Sci. Biol. Ecol., 52: 173–192

    Google Scholar 

  59. Redfield A.S., Ketchum B.H., Richards F.A., 1963, The influence of organisms on the composition of seawater. [in:] The Sea, Ed. Hill, M.N., London, Wiley-Interscience, pp. 26–77

    Google Scholar 

  60. Rhoads D., Aller R., Goldhaber M. B., 1977, The influence of colonizing benthos on physical properties and chemical diagenesis of the estuarine seafloor. [in:] Ecology of Marine Benthos, Ed. Coull, B. C., University of South Carolina Press, Columbia, pp. 113–138

    Google Scholar 

  61. Santschi P., Höhener P., Benoit G., 1990, Chemical processes at the sediment water interface, Mar. Chem., 30: 269–315

    Article  Google Scholar 

  62. Sharples J., Moore C.M., Rippeth T.P., Hooligan P.M., Hydes D.J., et al., 2001, Phytoplankton distribution and survival in the thermocline, Limnol. Oceanogr., 46: 486–496

    Article  Google Scholar 

  63. Søndergaard M., Jensen J.P., Jeppesen E., 2003, Role of sediment and internal loading of phosphorus in shallow lakes, Hydrobiologia, 506–509: 135–145

    Article  Google Scholar 

  64. Staniszewski A., Lejman A., Pempkowiak J., 2001, Horizontal and vertical distribution of lignin in surface sediments of the Gdańsk Basin, Oceanologia, 43(4); 421–439

    Google Scholar 

  65. Sundareshwar P.V., Morris J.T., 1999, Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient, Limnol. Oceanogr., 44: 1693–1701

    Article  Google Scholar 

  66. Tessenow U., 1972, Losungs-, diffusions-Sorptionsprozesse in der Oberschicht von Seesdeimenten. Ein Langzeitexperiment unter aeroben und anaeroben Bedingungen im Fließgleichgewicht, Arch. Hydrobiol., 38: 353–398 (in German)

    Google Scholar 

  67. Trzosińska A., 1994, Tlen. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 1993 roku, Eds. Cyberska, B., Lauer, Z., Trzosińska, A., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 219 (in Polish)

    Google Scholar 

  68. Trzosińska A., 1996, Tlen i siarkowodór. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 1995 roku, Eds. Cyberska, B., Lauer, Z., Trzosińska, A., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 228 (in Polish)

    Google Scholar 

  69. Trzosińska A., 1997, Tlen i siarkowodór. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 1996 roku, Eds. Cyberska, B., Lauer, Z., Trzosińska, A., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 221 (in Polish)

    Google Scholar 

  70. Trzosińska A., 1998, Sole biogeniczne. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 1997 roku, Eds. Cyberska, B., Lauer, Z., Trzosińska, A., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 269 (in Polish)

    Google Scholar 

  71. Trzosińska, A., 1999, Tlen i siarkowodór. [in:] Warunki środowiskowe polskiej strefy południowego Bałtyku w 1998 roku, Eds. Cyberska, B., Lauer, Z., Trzosińska, A., Gdynia, Poland, Institute of Meteorology and Water Management, pp. 288 (in Polish)

    Google Scholar 

  72. Virtasalo, J.J., Kohonen, T., Vuorinen, I., Huttula, T., 2005, Sea bottom in the Archipelago Sea, northern Baltic Sea — Implications for phosphorus remineralization at the sediment surface, Mar. Geol., 224: 103–122

    Article  Google Scholar 

  73. Westrich, J.T., Berner, R.A., 1984, The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested, Limnol. Oceanog., 29: 236–249

    Article  Google Scholar 

  74. Yamada, H., Kayama, M., 1987, Distribution and dissolution of several forms of phosphorus in coastal marine sediments, Oceanologica Acta, 10: 311–321

    Google Scholar 

  75. Yingst J.Y., Rhoads D.C., 1980, The role of bioturbation in the enhancement of bacterial growth rates in marine sediments. [in:] Marine Benthic Dynamics, Eds. Tenore, K.L., Coull, B.C., University of South Carolina Press, Columbia, pp. 407–421

    Google Scholar 

  76. Zabel, M., Dahmke, A., Schulz, H.D., 1998, Regional distribution of diffusive phosphate and silicate fluxes through the sediment-water interface: the eastern South Atlantic, Deep-Sea Research, 45: 277–300

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Łukawska-Matuszewska.

About this article

Cite this article

Łukawska-Matuszewska, K., Burska, D. Phosphate exchange across the sediment-water interface under oxic and hypoxic/anoxic conditions in the southern Baltic Sea. Ocean and Hydro 40, 57–71 (2011). https://doi.org/10.2478/s13545-011-0017-4

Download citation

Key words

  • phosphorus
  • hypoxia
  • benthic fluxes
  • eutrophication
  • sediments
  • Baltic Sea