Fractional Calculus and Applied Analysis

, Volume 17, Issue 2, pp 361–370 | Cite as

Towards a geometric interpretation of generalized fractional integrals — Erdélyi-Kober type integrals on RN, as an example

Discussion Survey


A family of generalized Erdélyi-Kober type fractional integrals is interpreted geometrically as a distortion of the rotationally invariant integral kernel of the Riesz fractional integral in terms of generalized Cassini ovaloids on RN. Based on this geometric point of view, several extensions are discussed.

Key Words and Phrases

fractional calculus Riesz fractional integrals Erdélyi-Kober fractional integrals generalized fractional calculus Cassini ovaloids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Erdélyi, On fractional integration and its application to the theory of Hankel transforms. The Quarterly J. of Mathematics (Oxford), Second Ser., 11 (1940), 293–303.CrossRefGoogle Scholar
  2. [2]
    W. Feller, On a generalization of Marcel Riesz’ potentials and the semigroups generated by them. Comm. Sem. Mathem. Universite de Lund (1952), 72–81.Google Scholar
  3. [3]
    R. Herrmann, Fractional Calculus — An Introduction for Physicists. World Scientific Publishing, Singapore (2011).CrossRefMATHGoogle Scholar
  4. [4]
    V.S. Kiryakova, Generalized Fractional Calculus and Applications. Longman (Pitman Res. Notes in Math. Ser. 301), Harlow; Co-publ.: John Wiley and Sons, New York (1994).MATHGoogle Scholar
  5. [5]
    V. Kiryakova, A long standing conjecture failed? In: Transform Methods & Special Functions’, Varna’ 96 (Proc. 2nd Internat. Workshop), Inst. Math. Inform. — Bulg. Acad. Sci., Sofia (1998), 584–593.Google Scholar
  6. [6]
    H. Kober, On fractional integrals and derivatives. Quarterly J. of Mathematics (Oxford Ser.) 11, No 1 (1940), 193–211.CrossRefMathSciNetGoogle Scholar
  7. [7]
    J. Liouville, Sur le calcul des differentielles á indices quelconques. J. École Polytechn. 13 (1832), 1–162.Google Scholar
  8. [8]
    F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press & World Sci., London - Singapore (2010).CrossRefMATHGoogle Scholar
  9. [9]
    J.C. Maxwell, On the description of oval curves, and those having a plurality of foci (focus geometry). (Proc.) Royal Society of Edinburgh 2 (1846); Reprinted in: The Scientific Letters and Papers of James Clerk Maxwell: 1846–1862, Cambridge University Press, UK (1990).Google Scholar
  10. [10]
    R.R. Nigmatullin, D. Baleanu, The derivation of the generalized functional equations describing self-similar processes. Fract. Calc. Appl. Anal. 15, No 4 (2012), 718–740; DOI: 10.2478/s13540-012-0049-5; Scholar
  11. [11]
    G. Pagnini, Erdelyi-Kober fractional diffusion. Fract. Calc. Appl. Anal. 15, No 1 (2012), 117–127; DOI: 10.2478/s13540-012-0008-1; Scholar
  12. [12]
    V.V. Pashkevich, On the asymmetric deformation of fissioning nuclei. Nucl. Phys. 169 (1971), 275–293; doi:10.1016/0375-9474(71)90884-0.CrossRefGoogle Scholar
  13. [13]
    I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, No 4 (2002), 367–386;; and Corrections to Figure 4 in: Fract. Calc. Appl. Anal. 6, No 1 (2003), 109–110.MATHMathSciNetGoogle Scholar
  14. [14]
    M. Riesz, L’integrale de Riemann-Liouville et le probléme de Cauchy. Acta Math. 81 (1949), 1–223.CrossRefMATHMathSciNetGoogle Scholar
  15. [15]
    S.G. Samko, Fractional integration and differentiation of variable order. Anal. Math. 21 (1995), 213–236.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    I.N. Sneddon, Mixed Boundary Value Problems in Potential Theory. North-Holland Publ. Co., Amsterdam (1966).MATHGoogle Scholar
  17. [17]
    I.N. Sneddon, The use in mathematical analysis of Erdélyi-Kober operators and some of their applications. In: Lecture Notes in Math. 457 (1975), 37–79 (Proc. Intern. Conf. on Fractional Calculus Held in New Haven, 1974), Springer-Verlag, N. York.CrossRefMathSciNetGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.GigaHedronDreieichGermany

Personalised recommendations