Skip to main content
Log in

Distributed coordination of fractional order multi-agent systems with communication delays

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Because of the complexity of the practical environments, many distributed multi-agent systems can not be illustrated with the integer-order dynamics and can only be described with the fractional-order dynamics. Under the connected network with directed weighted topologies, the dynamical characteristics of agents with fractional-order derivative operator is analyzed in this paper. Applying the Laplace transform and frequency domain theory of the fractional-order operator, the distributed coordination of fractional-order multi-agent systems (FOMAS) with communication delays is studied, and a critical value of time delay is obtained to ensure the consensus of FOMAS. Since the integer-order model is a special case of fractional-order model, the extended results in this paper are in accordance with that of the integer-order model. Finally, numerical examples are provided to verify our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aghajani, Y. Jalilian, J.J. Trujillo, On the existence of solutions of fractional integro-differential equations. Fract. Calc. Appl. Anal. 15, No 1 (2012), 44–69; 10.2478/s13540-012-0005-4; http://link.springer.com/article/10.2478/s13540-012-0005-4.

    MATH  MathSciNet  Google Scholar 

  2. Y.C. Cao, Y. Li, W. Ren, Y.Q. Chen, Distributed coordination of networked fractional-order systems. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics 40, No 2 (2010), 362–370.

    Article  Google Scholar 

  3. Y.C. Cao, W. Ren, Distributed coordination for fractional-order systems: dynamic interaction and absolute/relative damping. Systems & Control Letters 43, No 3–4 (2010), 233–240.

    Article  MathSciNet  Google Scholar 

  4. F. Chen, Z.Q. Chen, L. Y. Xiang, Z. Liu, Z. Yuan, Reaching a consensus via pinning control. Automatica 45, No 5 (2009), 1215–1220.

    Article  MATH  MathSciNet  Google Scholar 

  5. Y.Q. Chen, H.S. Ahn, I. Podlubny, Robust stability check of fractional order linear time invariant systems with interval uncertainties. Signal Processing 86, No 10 (2006), 2611–2618.

    Article  MATH  Google Scholar 

  6. I.D. Couzin, J. Krause, R. James, G.D. Ruxton, N.R. Franks, Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology 218, No 1 (2002), 1–11.

    Article  MathSciNet  Google Scholar 

  7. C.A. Desoer, Y.T. Wang, On the generalized Nyquist stability criterion. IEEE Trans. on Automatic Control 25, No 1 (1980), 187–196.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Jadbabaie, J. Lin, A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control 48, No 6 (2003), 988–1001.

    Article  MathSciNet  Google Scholar 

  9. Z. Jiao, Y.Q. Chen, Impulse response of a generalized fractional second order filter. Fract. Calc. Appl. Anal. 15, No 1 (2012), 97–116; DOI: 10.2478/s13540-012-0007-2; http://link.springer.com/article/10.2478/s13540-012-0007-2.

    MATH  MathSciNet  Google Scholar 

  10. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, 2006.

    MATH  Google Scholar 

  11. S. Li, H. Du, X. Lin, Finite-time consensus algorithm for multi-agent with double-integrator dynamics. Automatica 47, No 8 (2011), 1706–1712.

    Article  MATH  MathSciNet  Google Scholar 

  12. Y. Li, Y.Q. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mitta-Leffler stability. Computers and Mathematics with Applications 24, No 6 (2009), 1429–1468.

    Google Scholar 

  13. J. Liang, Z. Liu, X. Wang, Solvability for a couple system of nonlinear fractional differential equations in a vanach space. Fract. Calc. Appl. Anal. 16, No 1 (2013), 51–63; DOI: 10.2478/s13540-013-0004-0; http://link.springer.com/article/10.2478/s13540-013-0004-0.

    MathSciNet  Google Scholar 

  14. P. Lin, Y. M. Jia, Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies. Automatica 45, No 9 (2009), 2154–2158.

    Article  MATH  MathSciNet  Google Scholar 

  15. J.G. Lu, Y.Q. Chen, Stability and stabilization of fractional-order linear systems worh convex polytopic uncertainties. Fract. Calc. Appl. Anal. 16, No 1 (2013), 142–157; DOI: 10.2478/s13540-013-0010-2; http://link.springer.com/article/10.2478/s13540-013-0010-2.

    MathSciNet  Google Scholar 

  16. R. Olfati-Saber, R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control 49, No 9 (2004), 1520–1533.

    Article  MathSciNet  Google Scholar 

  17. J.K. Parrish, S.V. Viscido, D. Grunbaum, Self-organized fish schools: an examination of emergent properties. Biology Bull. 202, No 2 (2002), 296–305.

    Article  Google Scholar 

  18. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, 1999.

    MATH  Google Scholar 

  19. W. Ren, Y.C. Cao, Distributed Coordination of Multi-Agent Networks. Springer-Verlag, London, 2011.

    Book  MATH  Google Scholar 

  20. C.W. Reynolds, Flocks, herds, and schools: a distributed behavioral model. Computer Graphics 21, No 4 (1987), 25–34.

    Article  Google Scholar 

  21. J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, 2007.

    Book  Google Scholar 

  22. Y.P. Tian, C.L. Liu, Consensus of multi-agent systems with diverse input and communication delays. IEEE Transactions on Automatic Control 53, No 9 (2008), 2122–2128.

    Article  MathSciNet  Google Scholar 

  23. H.Y. Yang, X.L. Zhu, S.Y. Zhang, Consensus of second-order delayed multi-agent systems with leader-following. European J. of Control 16, No 2 (2010), 188–199.

    Article  MATH  MathSciNet  Google Scholar 

  24. H.Y. Yang, Z.X. Zhang, S.Y. Zhang, Consensus of second-order multiagent systems with exogenous Disturbances. International J. of Robust and Nonlinear Control 21, No 9 (2011), 945–956.

    Article  MATH  Google Scholar 

  25. J. Yu, and L. Wang, Group consensus in multi-agent systems with switching topologies and communication delays. Systems & Control Letters 59, No 6 (2010), 340–348.

    Article  MATH  MathSciNet  Google Scholar 

  26. T. Vicsek, A. Cziroo’k, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles. Physical Review Letter 75, No 6 (1995), 1226–1229.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-yong Yang.

About this article

Cite this article

Yang, Hy., Zhu, Xl. & Cao, Kc. Distributed coordination of fractional order multi-agent systems with communication delays. fcaa 17, 23–37 (2014). https://doi.org/10.2478/s13540-014-0153-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-014-0153-9

MSC 2010

Key Words and Phrases

Navigation