Skip to main content

A note on fractional Bessel equation and its asymptotics

Abstract

In this note we propose a fractional generalization of the classical modified Bessel equation. Instead of the integer-order derivatives we use the Riemann-Liouville version. Next, we solve the fractional modified Bessel equation in terms of the power series and provide an asymptotic analysis of its solution for large arguments. We find a leading-order term of the asymptotic formula for the solution to the considered equation. This behavior is verified numerically and shows high accuracy and fast convergence. Our results reduce to the classical formulas when the order of the fractional derivative goes to integer values.

This is a preview of subscription content, access via your institution.

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Dover Publications, 1965.

    Google Scholar 

  2. B. Ahmad, J.J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Analysis: Real World Applications 13, No 2 (2012), 599–606.

    Article  MathSciNet  MATH  Google Scholar 

  3. C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, 1978.

    MATH  Google Scholar 

  4. V.J. Ervin, N. Heuer, J.P. Roop, Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45, No 2 (2007), 572–591.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Gerolymatou, I. Vardoulakis, R. Hilfer, Modelling infiltration by means of a nonlinear fractional diffusion model. J. Phys. D: Appl. Phys. 39 (2006), 4104–4110.

    Article  Google Scholar 

  6. R. Gorenflo, F. Mainardi, Random walk models for space-fractional diffusion processes. Fractional Calulus and Applied Analysis 1, No 2 (1998), 167–191.

    MathSciNet  MATH  Google Scholar 

  7. R. Gorenflo, A.A. Kilbas, S.V. Rogozin, On the generalized Mittag-Leffler type function. Integral Transforms Spec. Funct. 7 (1998), 215–224.

    Article  MathSciNet  MATH  Google Scholar 

  8. N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta 45, No 5 (2006), C765–C771.

    Article  Google Scholar 

  9. S.-M. Jung, Approximation of analytic functions by Bessel functions of fractional order. Ukrainian Mathematical Journal 63 (2012), 1933–1944.

    Article  MATH  Google Scholar 

  10. A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations. Amsterdam, 2006.

    MATH  Google Scholar 

  11. A.A. Kilbas, M. Saigo, R.K. Saxena, Generalized Mittag-Leffler functions and generalized fractional calculus operators. Integral Transf. Spec. Funct. 15 (2004), 31–49.

    Article  MathSciNet  MATH  Google Scholar 

  12. A.A. Kilbas, M. Saigo, On solution of integral equation of Abel-Volterra type. Diff. Integr. Equat. 8, No 5 (1955), 993–1011.

    MathSciNet  Google Scholar 

  13. V. Kiryakova, The special functions of fractional calculus as generalized fractional calculus operators of some basic functions. Computers and Math. with Appl. 59, No 3 (2010), 1128–1141.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Kiryakova, The multi-index Mittag-Leffler functions as important class of special functions of fractional calculus, Computers and Math. with Appl. 59, No 5 (2010), 1885–1895.

    Article  MathSciNet  MATH  Google Scholar 

  15. N.N. Lebedev, R.R. Silverman, Special Functions and Their Applications. Dover Publications, 1972.

    MATH  Google Scholar 

  16. C. Li, D. Qian, YQ. Chen, On Riemann-Liouville and Caputo Derivatives. Discrete Dynamics in Nature and Society 2011 (2011), Article ID 562494.

  17. S.P. Mirevski, L. Boyadjiev, R. Scherer, On the Riemann-Liouville fractional calculus, g-Jacobi functions and F-Gauss functions, Applied Mathematics and Computation 187, No 1 (2007), 315–325.

    Article  MathSciNet  MATH  Google Scholar 

  18. S.P. Mirevski, L. Boyadjiev, On some fractional generalizations of the Laguerre polynomials and the Kummer function. Computers and Mathematics with Applications 59, No 3 (2010), 1271–1277.

    Article  MathSciNet  MATH  Google Scholar 

  19. F.W.J. Olver, Asymptotics and Special Functions. Academic Press, New York, 1974.

    Google Scholar 

  20. W. Okrasiński, Ł. Płociniczak, Bessel function model for corneal topography. Preprint, arXiv:1111.6143v2.

  21. J. Paneva-Konovska, Multi-index (3m-parametric) Mittag-Leffler functions and fractional calculus. C. R. Acad. Bulgare Sci. 64, No 8 (2011), 1089–1098.

    MathSciNet  MATH  Google Scholar 

  22. I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press, San Diego-Boston-New York-London-Tokyo-Toronto, 1999.

    Google Scholar 

  23. M. Rivero, L. Rodríguez-Germá, J.J. Trujillo, Linear fractional differential equations with variable coefficients. Applied Mathematics Letters 21 (2008), 892–897.

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Robert, Modified Bessel functions and their applications in probability and statistics. Statistics and Probability Letters 9, No 2 (1990), 155–161.

    Article  MathSciNet  Google Scholar 

  25. M.M. Rodrigues, N. Vieira, S. Yakubovich, Operational calculus for Bessel’s fractional equation. Operator Theory: Advances and Applications 229 (2013), 357–370.

    Google Scholar 

  26. D. Rostamy, K. Karimi, Bernstein polynomials for solving fractional heat- and wave-like equations. Fract. Calc. Appl. Anal. 15 (2012), 556–571; DOI: 10.2478/s13540-012-0039-7; at http://link.springer.com/journal/13540

    MathSciNet  Google Scholar 

  27. J. Timoney, T. Lysaght, V. Lazzarini, R. Gao, Computing modified Bessel functions with large modulation index for sound synthesis applications. In: CIICT 2009: Proc. of the China-Ireland Information and Communications Technologies Conf., Maynooth, Ireland, 19–21 Aug. 2009 (2009).

    Google Scholar 

  28. Ž. Tomovski, T.K. Pogány, Integral expressions for Mathieu-type power series and for the Butzer-Flocke-Hauss-function. Fract. Calc. Appl. Anal. 14 (2011), 623–634; DOI: 10.2478/s13540-011-0036-2: at http://link.springer.com/journal/13540

    MathSciNet  Google Scholar 

  29. B. Al-Saqabi, V. Kiryakova, Explicit solutions to hyper-Bessel integral equations of second kind. Computers and Math. with Appl. 37, No 1 (1999), 75–86.

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Shiba, Heaviside’s “Bessel cable” as an electric model for flat simple epithelial cells with low resistive junctional membranes. Journal of Theoretical Biology 30, No 1 (1971), 59–68.

    Article  Google Scholar 

  31. P. Zhuang, F. Liu, V. Anh, I. Turner, New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. on Numerical Analysis 46, No 2 (2008), 1079–1095.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Okrasiński.

About this article

Cite this article

Okrasiński, W., Płociniczak, Ł. A note on fractional Bessel equation and its asymptotics. fcaa 16, 559–572 (2013). https://doi.org/10.2478/s13540-013-0036-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-013-0036-5

MSC 2010

  • Primary 26A33
  • Secondary 34A08, 34B30

Key Words and Phrases

  • fractional calculus
  • fractional ordinary differential equation
  • Bessel function
  • asymptotic analysis