Skip to main content
Log in

Time-fractional heat conduction in an infinite medium with a spherical hole under robin boundary condition

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The time-fractional heat conduction equation with the Caputo derivative of the order 0 < α ≤ 2 is considered in an infinite medium with a spherical hole in the central symmetric case under two types of Robin boundary condition: the mathematical one with the prescribed linear combination of the values of temperature and the values of its normal derivative at the boundary and the physical condition with the prescribed linear combination of the values of temperature and the values of the heat flux at the boundary. The integral transforms techniques are used. Several particular cases of the obtained solutions are analyzed. The numerical results are illustrated graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Bazzaev, M.Kh. Shkhanukov-Lafishev, Locally one-dimensional scheme for fractional diffusion equation with Robin boundary conditions. Comp. Math. Math. Phys. 50, No 7 (2010), 1141–1149.

    Article  MathSciNet  Google Scholar 

  2. J. Chen, F. Liu, V. Anh, Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 338, No 2 (2008), 1364–1377.

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation. Osaka J. Math. 27, No. 2 (1990), 309–321.

    MathSciNet  MATH  Google Scholar 

  4. R. Gorenflo, J. Loutchko, Yu. Luchko, Computation of the Mittag- Leffler function Eα,β(z) and its derivative. Fract. Calc. Appl. Anal. 5,No 4 (2002), 491–518.

    MathSciNet  MATH  Google Scholar 

  5. R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order. In: A. Carpinteri, F. Mainardi (Eds.): Fractals and Fractional Calculus in Continuum Mechanics, Springer, New York (1997), 223–276.

    Google Scholar 

  6. R. Gorenflo, F. Mainardi, D. Moretti, P. Paradisi, Time fractional diffusion: a discrete random walk approach. Nonlinear Dynamics 29, No. 1–4 (2002), 129–143.

    Article  MathSciNet  MATH  Google Scholar 

  7. W. Jiang, Y. Lin, Representation of exact solution for the timefractional telegraph equation in the reproducing kernel space. Commun. Nonlinear Sci. Numer. Simulat. 16, No 9 (2011), 3639–3645.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Kemppainen, Existence and uniqueness of the solution for a timefractional diffusion equation with Robin boundary condition. Abstr. Appl. Anal. 2011, Article ID 321903 (2011), 11 pp.

    Google Scholar 

  9. A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  10. F. Mainardi, On the initial value problem for the fractional diffusionwave equation. In: S. Rionegro, T. Ruggeri (Eds.): Waves and Stability in Continuous Media, World Scientific, Singapore (1994), 246–251.

    Google Scholar 

  11. F. Mainardi, The time-fractional diffusion-wave equation. Radiofizika 38, No 1–2 (1995), 20–36 (In Russian).

    MathSciNet  Google Scholar 

  12. F. Mainardi, The fundamental solutions for the fractional diffusionwave equation. Appl. Math. Lett. 9, No 6 (1996), 23–28.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Mainardi, Fractional relaxation-oscillation and fractional diffusionwave phenomena. Chaos, Solitons Fractals 7, No 9 (1996), 1461–1477.

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  15. Y. Z. Povstenko, Fractional heat conduction equation and associated thermal stress. J. Thermal Stresses 28, No 1 (2005), 83–102.

    Article  MathSciNet  Google Scholar 

  16. Y. Z. Povstenko, Fractional heat conduction equation and associated thermal stresses in an infinite solid with spherical cavity. Quart. J. Mech. Appl. Math. 61, No 4 (2008), 523–547.

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Povstenko, Signaling problem for time-fractional diffusion-wave equation in a half-plane. Fract. Calc. Appl. Anal. 11, No 3 (2008), 329–352; at http://www.math.bas.bg/?fcaa/.

    MathSciNet  MATH  Google Scholar 

  18. Y. Z. Povstenko, Theory of thermoelasticity based on the space-timefractional heat conduction equation. Phys. Scr. T 136, Article 014017 (2009), 6 pp.

  19. Y. Z. Povstenko, Non-axisymmetric solutions to time-fractional diffusion-wave equation in an infinite cylinder. Fract. Calc. Appl. Anal. 14, No 3 (2011), 418–435; DOI:10.2478/s13540-011-0026-4; http://link.springer.com/journal/13540/14/3/.

    MathSciNet  Google Scholar 

  20. Y. Povstenko, Time-fractional radial heat conduction in a cylinder and associated thermal stresses. Arch. Appl. Mech. 82, No 3 (2012), 345–362.

    Article  MathSciNet  Google Scholar 

  21. Y. Povstenko, Central symmetric solution to the Neumann problem for a time-fractional diffusion-wave equation in a sphere, Nonlinear Anal.: Real World Appl. 13, No 3 (2012), 1229–1238.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Amsterdam (1993).

    Google Scholar 

  23. W. R. Schneider, W. Wyss, Fractional diffusion and wave equations. J. Math. Phys. 30, No 1 (1989), 134–144.

    Article  MathSciNet  MATH  Google Scholar 

  24. W. Wyss, The fractional diffusion equation. J. Math. Phys. 27, No 11 (1986), 2782–2785.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Povstenko.

Additional information

Dedicated to the 70th anniversary of Professor Francesco Mainardi

About this article

Cite this article

Povstenko, Y. Time-fractional heat conduction in an infinite medium with a spherical hole under robin boundary condition. fcaa 16, 354–369 (2013). https://doi.org/10.2478/s13540-013-0022-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-013-0022-y

MSC 2010

Key Words and Phrases

Navigation