Skip to main content
Log in

Spectral approximations to the fractional integral and derivative

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, the spectral approximations are used to compute the fractional integral and the Caputo derivative. The effective recursive formulae based on the Legendre, Chebyshev and Jacobi polynomials are developed to approximate the fractional integral. And the succinct scheme for approximating the Caputo derivative is also derived. The collocation method is proposed to solve the fractional initial value problems and boundary value problems. Numerical examples are also provided to illustrate the effectiveness of the derived methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Bagley, P.J. Torvik, On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51 (1984), 294–298.

    Article  MATH  Google Scholar 

  2. C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Specral Methods. Fundamentals in Single Domains. Springer-Verlag, Berlin (2006).

    Google Scholar 

  3. F. Cortés, M. Elejabarrieta, Finite element formulations for transient dynamic analysis in structural systems with viscoelastic treatments containing fractional derivative models. Int. J. Numer. Meth. Engng. 69 (2007), 2173–2195.

    Article  MATH  Google Scholar 

  4. K. Diethelm, N.J. Ford, A.D. Freed, Y. Luchko, Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Engrg. 194 (2005), 743–773.

    Article  MathSciNet  MATH  Google Scholar 

  5. E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, A chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62 (2011), 2364–2373.

    Article  MathSciNet  MATH  Google Scholar 

  6. E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Modelling 35 (2011), 5662–5672.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.T. Edwards, N.J. Ford, A.C. Simpson, The numerical solution of linear multi-term fractional equations: System of equations. J. Comput. Appl. Math. 148 (2002), 401–418.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Esmaeili, M. Shamsi, A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations. Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 3646–3654.

    Article  MathSciNet  MATH  Google Scholar 

  9. V.V. Kulish, Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124 (2002), 803–808.

    Article  Google Scholar 

  10. C.P. Li, A. Chen, J.J. Ye, Numerical approach to fractional calculus and fractional ordinary differential equations. J. Comput. Phys. 230 (2011), 3352–3368.

    Article  MathSciNet  MATH  Google Scholar 

  11. C.P. Li, F.H. Zeng, Finite difference methods for fractional differential equations. Int. J. Bifurcation Chaos 22, No 4 (2012), 1230014 (28 pages); DOI: 10.1142/S0218127412300145; http://www.worldscinet.com/ijbc/ijbc.shtml

    MathSciNet  Google Scholar 

  12. F. Liu, Q.Q. Yang, I. Turner, Two new implicit numerical methods for the fractional cable equation. J. Comput. Nonlinear Dyn. 6 (2011), 011009–1.

    Article  Google Scholar 

  13. C. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 17 (1986), 704–719.

    Article  MathSciNet  MATH  Google Scholar 

  14. V.E. Lynch, B.A. Carreras, D. del-Castillo-Negrete, K.M. Ferreira-Mejias, H.R. Hicks, Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192 (2003), 406–421.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993).

    MATH  Google Scholar 

  16. K.B. Oldham, J. Spanier, The Fractional Calculus. Academic Press, New York (2006).

    Google Scholar 

  17. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  18. I. Podlubny, Matrix approach to discrete fractional calculus, Fract. Calc. Appl. Anal. 3, No 4 (2000), 359–386.

    MathSciNet  MATH  Google Scholar 

  19. I. Podlubny, A. Chechkin, T. Skovranek, Y.Q. Chen, B. Vinagre, Matrix approach to discrete fractional calculus II: Partial fractional differential equations. J. Comput. Phys. 228 (2009), 3137–3153.

    Article  MathSciNet  MATH  Google Scholar 

  20. Y.A. Rossikhin, M.V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Applied Mechanics Reviews 63 (2010), 010801–1.

    Article  Google Scholar 

  21. A. Saadatmandi, M. Dehghan, A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59 (2010), 1326–1336.

    Article  MathSciNet  MATH  Google Scholar 

  22. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach Science, Yverdon, Switzerland (1993).

    MATH  Google Scholar 

  23. A. Schmidt, L. Gaul, On the numerical evaluation of fractional derivatives in multi-degree-of-freedom systems. Signal Processing 86 (2006), 2592–2601.

    Article  MATH  Google Scholar 

  24. J. Shen, T. Tang, L. L. Wang, Spectral Methods. Algorithms, Analysis and Applications. Springer-Verlag, Heidelberg, Berlin (2011).

    MATH  Google Scholar 

  25. E. Sousa, How to approximate the fractional derivative of order 1 < α ≤ 2. In: Proceedings of FDA’10. The 4th IFAC Workshop Fractional Differentiation and its Applications, Badajoz, Spain (2010).

  26. H. Sugiura, T. Hasegawa, Quadrature rule for Abel’s equations: Uniformly approximating fractional derivatives. J. Comput. Appl. Math. 223 (2009), 459–468.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, No 3 (2011), 1140–1153; doi:10.1016/j.cnsns.2010.05.027; http://www.sciencedirect.com/science/article/pii/S1007570410003205

    Article  MathSciNet  MATH  Google Scholar 

  28. H.G. Sun, W. Chen, C.P. Li, Y.Q. Chen, Finite difference schemes for variable-order time fractional diffusion equation. Int. J. Bifurcation Chaos 22, No 4 (2012), 1250085 (16 pages); DOI: 10.1142/S021812741250085X; http://www.worldscinet.com/ijbc/ijbc.shtml

  29. Z.Z. Sun, X.N. Wu, A fully discrete difference scheme for a diffusionwave system. Appl. Numer. Math. 56 (2006), 193–209.

    Article  MathSciNet  MATH  Google Scholar 

  30. Q. Yu, F. Liu, V. Anh, I. Turner, Solving linear and nonlinear spacetime fractional reaction-diffusion equations by the Adomian decomposition method. Int. J. Numer. Meth. Engng. 74 (2008), 138–158.

    Article  MathSciNet  MATH  Google Scholar 

  31. Z.M. Odibat, Computational algorithms for computing the fractional derivatives of functions. Math. Comput. Simulat. 79 (2009), 2013–2020.

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Zhuang, T. Gu, F. Liu, I. Turner, P.K.D.V. Yarlagadda, Timedependent fractional advection-diffusion equations by an implicit MLS meshless method. Int. J. Numer. Meth. Engng. 88 (2011), 1346–1362.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changpin Li.

About this article

Cite this article

Li, C., Zeng, F. & Liu, F. Spectral approximations to the fractional integral and derivative. fcaa 15, 383–406 (2012). https://doi.org/10.2478/s13540-012-0028-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-012-0028-x

MSC 2010

Key Words and Phrases

Navigation