Advertisement

Fractional Calculus and Applied Analysis

, Volume 15, Issue 2, pp 332–343 | Cite as

Covariant fractional extension of the modified Laplace-operator used in 3D-shape recovery

  • Richard Herrmann
Survey Paper
  • 44 Downloads

Abstract

Extending the Liouville-Caputo definition of a fractional derivative to a nonlocal covariant generalization of arbitrary bound operators acting on multidimensional Riemannian spaces an appropriate approach for the 3D shape recovery of aperture afflicted 2D slide sequences is proposed. We demonstrate, that the step from a local to a nonlocal algorithm yields an order of magnitude in accuracy and by using the specific fractional approach an additional factor 2 in accuracy of the derived results.

Key Words and Phrases

fractional calculus computer graphics image processing shape recovery confocal microscopy modified Laplacian 

MSC 2010

26A33 35R11 62H35 65D18 68U10 94A08 35J05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Falzon, and G. Giraudon, Singularity analysis and derivative scalespace. In: Proceedings CVPR’ 94, IEEE Computer Society Conference (1994), 245–250.Google Scholar
  2. [2]
    W. Feller, On a generalization of Marcel Riesz’ potentials and the semigroups generated by them. Comm. Sem. Mathem. Universite de Lund (1952), 72–81.Google Scholar
  3. [3]
    R. Herrmann, Fractional Calculus — An Introduction for Physicists. World Scientific Publishing, Singapore (2011); http://www.worldscibooks.com/physics/8072.html CrossRefGoogle Scholar
  4. [4]
    Z. Jiao and Y.Q. Chen, Impulse response of a generalized fractional second order filter, Fract. Calc. Appl. Anal. 15, No 1 (2012), 97–116; DOI: 10.2478/s13540-012-0007-2; at http://www.springerlink.com/content/1311-0454/15/1/ Google Scholar
  5. [5]
    J. Liouville, Sur le calcul des differentielles à indices quelconques. J. École Polytechnique 13 (1832), 1–162.Google Scholar
  6. [6]
    B. Mathieu, P. Melchior, A. Oustaloup and Ch. Ceyral, Fractional differentiation for edge detection. Signal Processing 83 (2003), 2421–2432.zbMATHCrossRefGoogle Scholar
  7. [7]
    K. B. Oldham and J. Spanier, The Fractional Calculus. Academic Press, New York (1974).Google Scholar
  8. [8]
    M. D. Ortigueira and J. A. Tenreiro Machado, Fractional signal processing and applications. Signal Processing 83 (2003), 2285–2286.CrossRefGoogle Scholar
  9. [9]
    I. Podlubny, Fractional Differential Equations. Academic Press, New York (1999).Google Scholar
  10. [10]
    H. Rafeiro and S. Samko, On multidimensional analogue of Marchaud formula for fractional Riesz-type derivatives in domains in R n. Fract. Calc. Appl. Anal. 8, No 4 (2005), 393–402; at http://www.math.bas.bg/~fcaa MathSciNetzbMATHGoogle Scholar
  11. [11]
    M. Riesz, L’integrale de Riemann-Liouville et le probléme de Cauchy. Acta Math. 81 (1949), 1–223.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    B. Rubin, On some inversion formulas for the Riesz potentials and k-plane transforms. Fract. Calc. Appl. Anal. 15, No 1 (2012), 34–44; DOI: 10.2478/s13540-012-0004-5; at http://www.springerlink.com/content/1311-0454/15/1/ Google Scholar
  13. [13]
    POV-Ray: Persistence of Vision Raytracer (2011); http://www.povray.org
  14. [14]
    C. E. Shannon, Communication in the presence of noise, Proc. Inst. of Radio Engineers 37, No 1 (1949), 10–21.MathSciNetGoogle Scholar
  15. [15]
    A. C. Sparavigna, Using fractional differentiation in astronomy, arXiv.org:0910.2381 (2009).Google Scholar
  16. [16]
    M. Spencer, Fundamentals of Light Microscopy. Cambridge University Press, Cambridge (1982).Google Scholar
  17. [17]
    M. Zernike, Das Phasenkontrastverfaren bei der mikroskopischen Beobachtung, Z. Tech. Phys. 16 (1935), 454–457.Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.GigaHedronDreieichGermany

Personalised recommendations