Skip to main content
Log in

An efficient parallel algorithm for the numerical solution of fractional differential equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The numerical solution of differential equations of fractional order is known to be a computationally very expensive problem due to the nonlocal nature of the fractional differential operators. We demonstrate that parallelization may be used to overcome these difficulties. To this end we propose to implement the fractional version of the second-order Adams-Bashforth-Moulton method on a parallel computer. According to many recent publications, this algorithm has been successfully applied to a large number of fractional differential equations arising from a variety of application areas. The precise nature of the parallelization concept is discussed in detail and some examples are given to show the viability of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods. World Scientific, Singapore (In preparation).

  2. H. Brunst, D. Hackenberg, G. Juckeland and H. Rohling, Comprehensive performance tracking with Vampir 7. Tools for High Performance Computing 2009 (M. S. Müller, M. M. Resch, A. Schulz and W. E. Nagel, Eds.) Springer, Berlin (2010), 17–29.

    Chapter  Google Scholar 

  3. H. Brunst, M. Winkler, W. E. Nagel and H.-C. Hoppe, Performance optimization for large scale computing: The scalable VAMPIR approach. Computational Science — ICCS 2001, Part II (au]V. N. Alexandrov, J. J. Dongarra, B. A. Juliano, R. S. Renner and C. J. K. Tan, Eds.), Springer, Berlin (2001), 751–760.

    Chapter  Google Scholar 

  4. K. Diethelm, Efficient solution of multi-term fractional differential equations using P(EC)mE methods. Computing 71 (2003), 305–319.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. Diethelm, The Analysis of Fractional Differential Equations. Springer, Berlin (2010); http://www.springer.com/mathematics/dynamical+systems/book/978-3-642-14573-5

    Book  MATH  Google Scholar 

  6. K. Diethelm, N.J. Ford and A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics 29 (2002), 3–22.

    Article  MATH  MathSciNet  Google Scholar 

  7. K. Diethelm, N.J. Ford and A.D. Freed, Detailed error analysis for a fractional Adams method. Numer. Algorithms 36 (2004), 31–52.

    Article  MATH  MathSciNet  Google Scholar 

  8. K. Diethelm, N.J. Ford, A.D. Freed and Y. Luchko, Algorithms for the fractional calculus: A selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194 (2005), 743–773.

    Article  MATH  MathSciNet  Google Scholar 

  9. N.J. Ford and J.A. Connolly, Comparison of numerical methods for fractional differential equations. Commun. Pure Appl. Anal. 5 (2006), 289–307.

    Article  MATH  MathSciNet  Google Scholar 

  10. N.J. Ford and A.C. Simpson, The numerical solution of fractional differential equations: Speed versus accuracy. Numer. Algorithms 26 (2001), 333–346.

    Google Scholar 

  11. M. Geimer, F. Wolf, B.J.N. Wylie, E. Ábrahám, D. Becker and B. Mohr, The Scalasca performance toolset architecture. Concurrency and Computation: Practice and Experience 22 (2010), 702–719.

    Google Scholar 

  12. M. Geimer, F. Wolf, B.J.N. Wylie, D. Becker, D. Böhme, W. Frings, M.-A. Hermanns, B. Mohr and Z. Szebenyi, Recent developments in the Scalasca toolset. Tools for High Performance Computing 2009 (M.S. Müller, M.M. Resch, A. Schulz and W.E. Nagel, Eds.) Springer, Berlin (2010), 39–51.

    Chapter  Google Scholar 

  13. GNS mbH, The Numerical Forming Simulation Software Package INDEED; http://www.gns-mbh.com/indeed.html

  14. GWT-TUD GmbH, Vampir Performance Optimization; http://www.vampir.eu

  15. E. Hairer, S.P. Nøsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems. 2nd ed., Springer, Berlin (1993).

    MATH  Google Scholar 

  16. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Berlin (1991).

    MATH  Google Scholar 

  17. R. Hilfer (Ed.), Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000).

    MATH  Google Scholar 

  18. Jülich Supercomputing Centre, SCALASCA — Scalable Performance Analysis of Large-Scale Applications; http://www.scalasca.org

  19. R. Klages, G. Radons and I. M. Sokolov (Eds.), Anomalous Transport: Foundations and Applications. Wiley-VCH, Weinheim (2008).

    Google Scholar 

  20. A. Le Méhauté, J.A. Tenreiro Machado, J.C. Trigeassou and J. Sabatier (Eds.), Fractional Differentiation and its Applications. Ubooks, Neusä.

  21. C. Lubich, Runge-Kutta theory for Volterra and Abel integral equations of the second kind. Math. Comp. 41 (1983), 87–102.

    Article  MATH  MathSciNet  Google Scholar 

  22. C. Lubich, Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comp. 45 (1985), 463–469.

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Magin, Fractional Calculus in Bioengineering. Begell House, Redding (2006).

    Google Scholar 

  24. Message Passing Interface Forum, MPI: A Message-Passing Interface Standard; http://www.mpi-forum.org/docs/docs.html

  25. M. S. Müller, A. Knüpfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix and W.E. Nagel, Developing scalable applications with Vampir, VampirServer and VampirTrace. Parallel Computing: Architectures, Algorithms and Applications (C. Bischof, M. Bücker, P. Gibbon, G. R. Joubert, T. Lippert, B. Mohr and F. Peters, Eds.), IOS Press, Amsterdam (2008), 637–644.

    Google Scholar 

  26. W.E. Nagel, A. Arnold, M. Weber, H.-C. Knoppe and K. Solchenbach, VAMPIR: Visualization and analysis of MPI resources. Supercomputer 12 (1996), 69–80.

    Google Scholar 

  27. K.B. Oldham and J. Spanier, The Fractional Calculus. Academic Press, New York (1974).

    MATH  Google Scholar 

  28. OpenMP Architecture Review Board, The OpenMP API Specification for Parallel Programming; http://www.openmp.org

  29. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  30. S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993).

    MATH  Google Scholar 

  31. M.S. Tavazoei, Comments on stability analysis of a class of nonlinear fractional-order systems. IEEE Trans. Circuits Systems II 56 (2009), 519–520.

    Article  Google Scholar 

  32. M.S. Tavazoei, M. Haeri, S. Bolouki and M. Siami, Stability preservation analysis for frequency-based methods in numerical simulation of fractional-order systems. SIAM J. Numer. Anal. 47 (2008), 321–328.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Diethelm.

About this article

Cite this article

Diethelm, K. An efficient parallel algorithm for the numerical solution of fractional differential equations. fcaa 14, 475–490 (2011). https://doi.org/10.2478/s13540-011-0029-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-011-0029-1

MSC 2010

Key Words and Phrases

Navigation