Skip to main content
Log in

Abstract time-fractional equations: Existence and growth of solutions

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We contribute to the existence theory of abstract time-fractional equations by stating the sufficient conditions for generation of not exponentially bounded α-times C-regularized resolvent families (α > 1) in sequentially complete locally convex spaces. We also consider the growth order of constructed solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Austria)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Arendt, C.J.K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems. Birkhäuser Verlag, Basel (1990).

    Google Scholar 

  2. E. Bazhlekova, Fractional Evolution Equations in Banach Spaces. PhD Thesis, Department of Mathematics, Eindhoven University of Technology, Eindhoven (2001); http://alexandria.tue.nl/extra2/200113270.pdf.

    MATH  Google Scholar 

  3. C. Chen, M. Li, On fractional resolvent operator functions. Semigroup Forum 80, No 1 (2010), 121–142.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. deLaubenfels, Existence Families, Functional Calculi and Evolution Equations. Lecture Notes in Mathematics 1570, Springer, New York (1994).

    MATH  Google Scholar 

  5. H.J. Haubold, A.M. Mathai, R.K. Saxena, Mittag-Leffler functions and their applications. ArXiv: 0909.0230v2 [math.CA] 2009; http://arxiv.org/PScache/arxiv/pdf/0909/0909.0230v2.pdf.

  6. M. Hieber, A. Holderrieth, F. Neubrander, Regularized semigroups and systems of linear partial differential equations. Ann. Scuola Norm. Sup. Pisa 19,No 3 (1992), 363–379.

    MATH  MathSciNet  Google Scholar 

  7. M. Kostić, Complex powers of non-densely defined operators. Publ. Inst. Math., Nouv. Sér. (Math. Inst. Belgrade), To appear (2011).

  8. M. Kostić, (a, k)-regularized C-resolvent families: regularity and local properties. Abstr. Appl. Anal. 2009 Article ID 858242 (2009), 27 pages.

    Google Scholar 

  9. M. Kostić, Abstract Volterra equations in locally convex spaces. Preprint (2010), Submitted to: Science in China.

  10. M. Kostić, Generalized Semigroups and Cosine Functions. Mathematical Institute Belgrade, 2011.

  11. F.-B. Li, M. Li, Q. Zheng, Fractional evolution equations governed by coercive differential operators. Abstr. Appl. Anal. 2009, Article ID 438690 (2009), 14 pages.

    Google Scholar 

  12. M. Li, Q. Zheng, J. Zhang, Regularized resolvent families. Taiwanese J. Math. 11, No 1 (2007), 117–133.

    MATH  MathSciNet  Google Scholar 

  13. M. Li, C.-C. Li, F.-B. Li, On fractional powers of generators of fractional resolvent families. J. Funct. Anal. 259, No 10 (2010), 2702–2726.

    Article  MATH  MathSciNet  Google Scholar 

  14. C. Lizama, Regularized solutions for abstract Volterra equations. J. Math. Anal. Appl. 243, No 2 (2000), 278–292.

    Article  MATH  MathSciNet  Google Scholar 

  15. C. Martínez, M. Sanz, The Theory of Fractional Powers of Operators. North-Holland Math. Stud. 187, Elseiver, Amsterdam (2001).

    MATH  Google Scholar 

  16. R. Meise, D. Vogt, Introduction to Functional Analysis. Translated from the German by M.S. Ramanujan and revised by the authors. Oxford Grad. Texts Math., Clarendon Press, New York (1997).

    MATH  Google Scholar 

  17. J. Prüss, Evolutionary Integral Equations and Applications. Monographs in Mathematics 87, Birkhäuser Verlag, Basel (1993).

    MATH  Google Scholar 

  18. B. Straub, Fractional powers of operators with polynomially bounded resolvents and semigroups generated by them. Hiroshima Math. J. 24, No 3 (1994), 529–548; http://projecteuclid.org/euclid.hmj/1206127925.

    MATH  MathSciNet  Google Scholar 

  19. T.-J. Xiao, J. Liang, The Cauchy Problem for Higher-Order Abstract Differential Equations. Springer-Verlag, Berlin (1998).

    MATH  Google Scholar 

  20. J. Zhang, Q. Zheng, Pseudodifferential operators and regularized semigroups. Chin. J. Contemp. Math. 19, No 4 (1998), 387–394.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Kostić.

About this article

Cite this article

Kostić, M. Abstract time-fractional equations: Existence and growth of solutions. fcaa 14, 301–316 (2011). https://doi.org/10.2478/s13540-011-0018-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-011-0018-4

MSC 2010

Key Words and Phrases