Skip to main content
Log in

Fractional Fokker-Planck-Kolmogorov type equations and their associated stochastic differential equations

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

There is a well-known relationship between the Itô stochastic differential equations (SDEs) and the associated partial differential equations called Fokker-Planck equations, also called Kolmogorov equations. The Brownian motion plays the role of the basic driving process for SDEs. This paper provides fractional generalizations of the triple relationship between the driving process, corresponding SDEs and deterministic fractional order Fokker-Planck-Kolmogorov type equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Andries, S. Umarov, S. Steinberg, Monte Carlo random walk simulations based on distributed order differential equations with applications in cell biology, Fract. Calc. Appl. Anal. 9, No 4 (2006), 351–369.

    MATH  MathSciNet  Google Scholar 

  2. D. Applebaum, Lévy Processes and Stochastic Calculus. Cambridge University Press (2004).

  3. B. Baeumer, M.M. Meerschaert, J. Mortensen, Space-time fractional derivative operators. Proc. Amer. Math. Soc. 133, No 8 (2005), 2273–2282.

    Article  MATH  MathSciNet  Google Scholar 

  4. D.A. Benson, S.W. Wheatcraft, M.M. Meerschaert, Application of a fractional advection-dispersion equation. Water Resour. Res. 36, No 6 (2000), 1403–1412.

    Article  Google Scholar 

  5. P. Billingsley, Convergence of Probability Measures. Wiley, New York (1968).

    MATH  Google Scholar 

  6. A.V. Chechkin, V.Yu. Gonchar, R. Gorenflo, N. Korabel, I.M. Sokolov, Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights. Physical Review E 78 (2008), 021111.

    Article  MathSciNet  Google Scholar 

  7. G. Da Prato, J. Zabczyk, Second Order Partial Differential Equations in Hilbert Spaces. Cambridge University Press (2002).

  8. R.N. Ghosh, W.W. Webb, Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys. J. 66, No 5 (1994), 1301–1318.

    Article  Google Scholar 

  9. J.E. Gillis, G.H. Weiss, Expected number of distinct sites visited by a random walk with an infinite variance. J. Mathematical Phys. 11 (1970), 1307–1312.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Gorenflo, Yu. Luchko, S. Umarov, On the Cauchy and multipoint problems for partial pseudo-differential equations of fractional order. Fract. Calc. Appl. Anal. 3, No 3 (2000), 249–277.

    MATH  MathSciNet  Google Scholar 

  11. R. Gorenflo, F. Mainardi, E. Scalas, M. Raberto, Fractional calculus and continuous-time finance, III. In: Mathematical Finance, Trends Math., Birkháuser, Basel (2001), 171–180.

    Google Scholar 

  12. R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order. In: A. Carpinteri and F. Mainardi (Eds.): Fractals and Fractional Calculus in Continuum Mechanics, Springer (1997), 223–276.

  13. R. Gorenflo, F. Mainardi, Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1, No 2 (1998), 167–191.

    MATH  MathSciNet  Google Scholar 

  14. R. Gorenflo, F. Mainardi, Random walk models approximating symmetric space-fractional diffusion processes. In: J. Elschner, I. Gohberg and B. Silbermann (Eds.): Problems and Methods in Mathematical Physics, Operator Theory: Advances and Applications, 121. Birkhäuser, Basel (2001), 120–145.

    Google Scholar 

  15. R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Discrete random walk models for space-time fractional diffusion. Chemical Physics 284 (2002), 521–544.

    Article  Google Scholar 

  16. R. Gorenflo, F. Mainardi, Continuous time random walk, Mittag-Leffler waiting time and fractional diffusion: Mathematical aspects. In: R. Klages, G. Radons and I. M. Sokolov (Eds.): Anomalous Transport: Foundations and Applications, Wiley-VCH, Weinheim, Germany (2008), 93–127.

    Chapter  Google Scholar 

  17. R. Gorenflo, F. Mainardi, A. Vivoli, Continuous time random walk and parametric subordination in fractional diffusion. Chaos, Solitons Fractals 34, No 1 (2007), 87–103.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Hahn, K. Kobayashi, Je. Ryvkina, S. Umarov, On time-changed Gaussian processes and their associated Fokker-Planck-Kolmogorov equations. Submitted, Math ArXiv: 1011.2473.

  19. M. Hahn, K. Kobayashi, S. Umarov, SDEs driven by a time-changed Lévy process and their associated pseudo-differential equations. J. Theoret. Probab., To appear (2010), DOI: 10.1007/s10959-010-0289-4.

  20. M. Hahn, K. Kobayashi, S. Umarov, Fokker-Planck-Kolmogorov equations associated with time-changed fractional Brownian motion. Proc. Amer. Math. Soc. 139, No 2 (2011), 691–705, DOI 0002-9939(2010)10527-0.

    Article  Google Scholar 

  21. J. Jacod, A.N. Shiryaev, Limit Theorems for Stochastic Processes. Springer-Verlag, Berlin (1987).

    MATH  Google Scholar 

  22. K. Kobayashi, Stochastic calculus for a time-changed semimartingale and the associated stochastic differential equations. J. of Theoret. Probab., To appear (2010), DOI: 10.1007/s10959-010-0320-9.

  23. A. Kochubei, Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340 (2008), 252–281.

    Article  MATH  MathSciNet  Google Scholar 

  24. V.N. Kolokoltsov, Generalized continuous-time random walk (CTRW), subordinating by hitting times and fractional dynamics. Theor. Prob. Appl. 53, No 4 (2009), 594–609.

    Article  MATH  Google Scholar 

  25. F. Liu, S. Shen, V. Anh, I. Turner, Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. ANZIAM J. 46 (2005), 488–504.

    MathSciNet  Google Scholar 

  26. M. Magdziarz, A. Weron, J. Klafter, Equivalence of the fractional Fokker-Planck and subordinated Langevin equations: The case of a time-dependent force. Phys. Rev. Lett. 101 (2008), 210601.

    Article  Google Scholar 

  27. F. Mainardi, Yu. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, No 2 (2001), 153–192.

    MATH  MathSciNet  Google Scholar 

  28. M. Meerschaert, H-P. Scheffler, Stochastic model for ultraslow diffusion. Stochastic Process. Appl. 116 (2006), 1215–1235.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Meerschaert, H-P. Scheffler, Limit Distributions for Sums of Independent Random Vectors. Heavy Tails in Theory and Practice. John Wiley and Sons, Inc. (2001).

  30. M. Meerschaert, E. Nane, Y. Xiao, Correlated continuous time random walks. Stat. Probab. Lett. 79 (2009), 1194–1202.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Meerschaert, H-P. Scheffler, Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Prob. 4192004), 623–638.

  32. M.M. Meerschaert, H-P. Scheffler, Triangular array limits for continuous time random walks. Stochastic Process. Appl. 118 (2008), 1606–1633.

    Article  MATH  MathSciNet  Google Scholar 

  33. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, No 1 (2000), 1–77.

    Article  MATH  MathSciNet  Google Scholar 

  34. R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37 (2004), 161–208.

    Article  MathSciNet  Google Scholar 

  35. E.W. Montroll, M.F. Shlesinger, On the wonderful world of random walks. In: J. Leibowitz and E.W. Montroll (Eds.), Nonequilibrium Phenomena II: From Stochastics to Hydrodynamics, North-Holland, Amsterdam (1984), 1–121.

    Google Scholar 

  36. E.W. Montroll, G.H. Weiss, Random walks on lattices, II. J. Mathematical Phys. 6 (1965), 167–181.

    Article  MathSciNet  Google Scholar 

  37. P. Protter, Stochastic Integration and Differential Equations. 2nd Ed., Springer (2004).

  38. K-i. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press (1999).

  39. M.J. Saxton, K. Jacobson, Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26 (1997), 373–399.

    Article  Google Scholar 

  40. E. Scalas, Five years of continuous-time random walks in econophysics. In: The Complex Networks of Economic Interactions, Lecture Notes in Economics and Mathematical Systems, Vol. 567, Springer, Berlin (2006), 316.

    Chapter  Google Scholar 

  41. D. Stroock, Markov Processes from K. Itô’s Perspective. Prinston University Press (2003).

  42. V.V. Uchaikin, V.M. Zolotarev, Chance and Stability. Stable Distributions and Their Applications. VSP, Utrecht (1999).

    MATH  Google Scholar 

  43. S. Umarov, R. Gorenflo, Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations, I. Z. Anal. Anwendungen 24, No 3 (2005), 449–466.

    MATH  MathSciNet  Google Scholar 

  44. S. Umarov, R. Gorenflo, On multi-dimensional random walk models approximating symmetric space-fractional diffusion processes. Fract. Calc. Appl. Anal. 8, No 1 (2005), 73–88

    MathSciNet  Google Scholar 

  45. S. Umarov, S. Steinberg, Variable order differential equations with piecewise constant order-function and diffusion with changing modes. Z. Anal. Anwendungen 29, No 4 (2009), 431–450.

    Article  MathSciNet  Google Scholar 

  46. S. Umarov, S. Steinberg, Random walk models associated with distributed fractional order differential equations. In: High Dimensional Probability, IMS Lecture Notes — Monograph Series 51 (2006), 117–127.

  47. S. Umarov, On fractional Duhamel’s principle and its applications. Submitted, ArXiv: 1002.1494.

  48. G.M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, No 6 (2002), 461–580.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjorie Hahn.

Additional information

Dedicated to 80-th anniversary of Professor Rudolf Gorenflo

About this article

Cite this article

Hahn, M., Umarov, S. Fractional Fokker-Planck-Kolmogorov type equations and their associated stochastic differential equations. fcaa 14, 56–79 (2011). https://doi.org/10.2478/s13540-011-0005-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-011-0005-9

MSC 2010

Key Words and Phrases

Navigation