Skip to main content
Log in

Growth of Zn1−x Cd x O nanocrystalline thin films by sol-gel method and their characterization for optoelectronic applications

  • Published:
Materials Science-Poland

Abstract

This paper describes the growth of Cd doped ZnO thin films on a glass substrate via sol-gel spin coating technique. The effect of Cd doping on ZnO thin films was investigated using X-ray diffraction (XRD), UV-Vis spectroscopy, photoluminescence spectroscopy, I–V characteristics and field emission scanning electron microscopy (FESEM). X-ray diffraction patterns showed that the films have preferred orientation along (002) plane with hexagonal wurtzite structure. The average crystallite sizes decreased from 24 nm to 9 nm, upon increasing of Cd doping. The films transmittance was found to be very high (92 to 95 %) in the visible region of solar spectrum. The optical band gap of ZnO and Cd doped ZnO thin films was calculated using the transmittance spectra and was found to be in the range of 3.30 to 2.77 eV. On increasing Cd concentration in ZnO binary system, the absorption edge of the films showed the red shifting. Photoluminescence spectra of the films showed the characteristic band edge emission centred over 377 to 448 nm. Electrical characterization revealed that the films had semiconducting and light sensitive behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohta H., Hosono H., Mater. Today, 7 (2004), 42.

    Article  Google Scholar 

  2. Tang Z.K., Wong G.K.L., Yu P., Kawasaki M., Ohtomo A., Koinuma H., Segawa Y., Appl. Phys. Lett., 72(25) (1998), 3270.

    Article  Google Scholar 

  3. Reddy K.T.R., Sravani C., Miles R.W., J. Cryst. Growth, 184–185 (1998), 1031.

    Article  Google Scholar 

  4. Park S.-H., Ryu J.-Y., Choi H.-H., Kwon T.-H., Sensor Actuat. B-Chem., 46(2) (1998), 75.

    Article  Google Scholar 

  5. Chung W.-Y., Sakai G., Shimanoe K., Miura N., Lee D.-D., Yamazoe N., Sensor Actuat. B-Chem., 46(2) (1998), 139.

    Article  Google Scholar 

  6. Sonawane B.K., Shelke V., Bhole M.P., Patil D.S., J. Phys. Chem. Solids, 72(12) (2011), 1442.

    Article  Google Scholar 

  7. Mondal S., Kanta K.P., Mitra P., Journal of Physical Science, 12 (2008), 221.

    Google Scholar 

  8. Lieber C.M., Solid State Commun., 107 (1998), 607.

    Article  Google Scholar 

  9. Wang X.N., Wang Y., Mei Z.X., Dong J., Zeng Z.Q., Yuan H.T., Zhang T.C., Du X.L., Jia J.F., Xue Q.K., Zhang X.N., Zhang Z., Li Z.F., Lu W., Appl. Phys. Lett., 90(15) (2007), 151912.

    Article  Google Scholar 

  10. Ye J.D., Gu S.L., Zhu S.M., Qin F., Liu S.M., Liu W., Zhou X., Hu L.Q., Zhang R., Shi Y., Zheng Y.D., J. Appl. Phys., 96(9) (2004), 5308.

    Article  Google Scholar 

  11. Haga K., Suzuki T., Kashiwaba Y., Watanabe H., Zhang B.P., Segawa Y., Thin solid films, 433 (2003), 131.

    Article  Google Scholar 

  12. Vigil O., Vaillant L., Cruz F., Santana G., Morales-Acevedo A., Contreras-Puente G., Thin solid films, 361–362 (2000), 53.

    Article  Google Scholar 

  13. Ueda N., Maeda H., Hosono H., Kawazoe H., J. Appl. Phys., 84(11) (1998), 6174.

    Article  Google Scholar 

  14. Lee S.Y., Li Y., Lee J.-S., Lee J.K., Nastasi M., Crooker S.A., Jia Q.X., Kang H.-S., Kang J.-S., Appl. Phys. Lett., 85(2) (2004), 218.

    Article  Google Scholar 

  15. Delgado G.T., Zuniga-Romero C.I., Sandoval O.J., Adv. Funct. Mater., 12 (2002), 129.

    Article  Google Scholar 

  16. Khan Z.R., Khan M.S., Zulfequar M., Khan M.S., Mater. Sci. Appl., 2(5) (2011), 340.

    Google Scholar 

  17. Maity R., Chattopadhyay K.K., Sol. Energ. Mat. Sol. C, 90 (2006), 597.

    Article  Google Scholar 

  18. Singh A., Kumar D., Khanna P.K., Kumar M., Prasad B., ECS J. Solid State Sci. Technol., 2(9) (2013), Q136.

    Article  Google Scholar 

  19. Caglar Y., Caglar M., Ilican S., Ates A., J. Phys. D-Appl. Phys., 42 (2009), 065421.

    Article  Google Scholar 

  20. Vijayalakshami S., Venkataraj S., Jayavel R., J. Phys. D-Appl. Phys., 41 (2008), 245403.

    Article  Google Scholar 

  21. Zhang J., Zhao S.-Q., Zhang K., Zhou J.-Q., Cai Y.-F., Nanoscale Res. Lett., 7 (2012), 405.

    Article  Google Scholar 

  22. Vanheusden K., Warren W.L., Seager C.H., Tallant D.R., Voigt J.A., Gnade B.E., J. Appl. Phys., 79(10) (1996), 7983.

    Article  Google Scholar 

  23. Kohan A.F., Ceder G., Morgan D., Van De Walle C.G., Phys. Rev. B, 61(22) (2000), 15019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anver Aziz.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munirah, Khan, Z.R., Khan, M.S. et al. Growth of Zn1−x Cd x O nanocrystalline thin films by sol-gel method and their characterization for optoelectronic applications. Mater Sci-Pol 32, 688–695 (2014). https://doi.org/10.2478/s13536-014-0248-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13536-014-0248-3

Keywords

Navigation