Materials Science-Poland

, Volume 32, Issue 2, pp 220–227

Structural and elastic properties of TiN and AlN compounds: first-principles study

  • Meriem Fodil
  • Amine Mounir
  • Mohammed Ameri
  • Hadj Baltache
  • Bachir Bouhafs
  • Y. Al-Douri
  • Ibrahim Ameri
Research Article

Abstract

First-principles calculations of the lattice constants, bulk modulus, pressure derivatives of the bulk modulus and elastic constants of AlN and TiN compounds in rock-salt (B1) and wurtzite (B4) structures are presented. We have used the fullpotential linearized augmented plane wave (FP-LAPW) method within the density functional theory (DFT) in the generalized gradient approximation (GGA) for the exchange-correlation functional. Moreover, the elastic properties of cubic TiN and hexagonal AlN, including elastic constants, bulk and shear moduli are determined and compared with previous experimental and theoretical data. Our results show that the structural transition at 0 K from wurtzite to rock-salt phase occurs at 10 GPa and −26 GPa for AlN and TiN, respectively. These results are consistent with those of other studies found in the literature.

Keywords

N-compounds elastic properties first-principle calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Pierson H.O., Handbook of refractory carbides and nitrides. Properties, Characteristics, Processing and Applications, Noyes Publications, New Jersey, USA, 1996.Google Scholar
  2. [2]
    Centre Technique Des Industries Mécaniques (CETIM), Manuel des traitements de surface à l’usage des bureaux d’étude, Paris, 1987.Google Scholar
  3. [3]
    Lunarska E., Ageeva N., Michalski J., Surf. Coat. Tech., 76–77 (1995), 297.Google Scholar
  4. [4]
    Yu Z., Ingawa K., Jin Z., Thin Solid Films, 264 (1995), 52.CrossRefGoogle Scholar
  5. [5]
    Dingle R., Sell D.D., Stokowski S.E., Llegems M., Phys. Rev. B, 4 (1971), 1211.CrossRefGoogle Scholar
  6. [6]
    Llegems M., Dingle R., Logan R.A., J. Appl. Phys., 43 (1972), 3797.CrossRefGoogle Scholar
  7. [7]
    Pugh S.K., Dugdale D.J., Brand S., Abram R.A., Semicond. Sci. Tech., 14 (1999), 23.CrossRefGoogle Scholar
  8. [8]
    Bellotti M.E., Ghilino E., Ghione G., Brennan K.F., J. Appl. Phys., 88 (2000), 6467.CrossRefGoogle Scholar
  9. [9]
    Min B.J., Chan C.T., K. Ho M., Phys. Rev. B, 45 (1992), 1159CrossRefGoogle Scholar
  10. [10]
    Rubio A., Corkill J.L., Cohen M.L., Shirley E.L., Louie S.G., Phys. Rev. B, 48 (1993), 11810.CrossRefGoogle Scholar
  11. [11]
    Wagner J.M., Bechstedt F., Phys. Rev. B, 66 (2002), 115202.CrossRefGoogle Scholar
  12. [12]
    Christensen N.E., Gorczyca I., Phys. Rev. B, 50 (1994), 4397.CrossRefGoogle Scholar
  13. [13]
    Wieser M.E., Berglund M., Pure Appl. Chem., 81 (2009), 2131.CrossRefGoogle Scholar
  14. [14]
    “Nitrure d’aluminium” dans la base de données de produits chimiques REPTOX de la CSST (organisme canadien responsable de la sécurité et de la santé au travail), consulté le 25 avril 2009.Google Scholar
  15. [15]
    Perdew J.P., Chevary J.A., Vosko S.H., Jackson K.A., Pedreson M.R., Singh D.J., Fiolhais C., Phys. Rev. B, 46 (1992), 6671.CrossRefGoogle Scholar
  16. [16]
    Perdew J.P., Burke S., Ernzerhof M., Phys. Rev. Lett., 77 (1996), 3865.CrossRefGoogle Scholar
  17. [17]
    Wong K.M., Alay-E-Abbas S.M., Shaukat A., Fang Y., Lei Y., J. Appl. Phys., 113 (2013), 014304.CrossRefGoogle Scholar
  18. [18]
    Wong K.M., Alay-E-Abbas S.M., Fang Y., Shaukat A., Lei Y., J. Appl. Phys., 114 (2013), 034901.CrossRefGoogle Scholar
  19. [19]
    Blaha P., Schwarz K., Madsen G.K.H., Kvasnicka D., Luitz J., Computer code WIEN2K (Vienna University of Technology, 2002), improved and updated Unix version of the original P.Blaha, K.Schwarz, P.Sorantin, S.B. Rickey, Comput. Phys. Commun., 59 (1990), 399.Google Scholar
  20. [20]
    Mehl M.J., Phys. Rev. B, 47 (1993), 2493.CrossRefGoogle Scholar
  21. [21]
    Shang S.L., Saengdeejing A., Mei Z.G., Kim D.E., Zhang H., Ganeshan S., Wang Y., Liu Z.K., Comp. Mater. Sci., 48 (2010), 813.CrossRefGoogle Scholar
  22. [22]
    Nye J.F., Proprietés physiques des cristaux, Edition Dunod, Paris (1961).Google Scholar
  23. [23]
    Mehl M.J., Klein B.K., Papaconstantopoulos D.A., Intermetallic compound: principle and practice, in: Westbrook J.H., Fleischeir R.L. (Eds.), Principles, vol. I, John Wiley and Sons, 1995.Google Scholar
  24. [24]
    Voigt W., Lehrbush der Kristallphysik, Taubner, Leipzig, 1928.Google Scholar
  25. [25]
    Schreiber E., Anderson O.L., Soga N., Elastic Constants and Their Measurements, McGraw-Hill, New York, 1973.Google Scholar
  26. [26]
    Wang A.J., Shang S.L., Du Y., Zhang L.J., Chen L., Zhao D.D., Liu Z.K., Comp. Mater. Sci., 48 (2010), 705.CrossRefGoogle Scholar
  27. [27]
    Stampfl C., Mannstadt W., Asahi R., Freeman A.J., Phys. Rev. B, 63 (2001), 155106.CrossRefGoogle Scholar
  28. [28]
    Hung A., Russo S.P., Mcculloch D.G., J. Chem. Phys., 120 (2004), 4890.CrossRefGoogle Scholar
  29. [29]
    Yeh C.Y., Lu Z.W., Froyen S., Zunger A., Phys. Rev. B, 46 (1992), 10086.CrossRefGoogle Scholar
  30. [30]
    Strite S., Morkoc H., J. Vac. Sci. Technol. B, 10 (1992), 1237.CrossRefGoogle Scholar
  31. [31]
    Xia Q., Xia H., Ruoff A.L., J. Appl. Phys., 73 (1993), 8198.CrossRefGoogle Scholar
  32. [32]
    Holec D., Rovere F., Mayrhofer P.H., Barna P.B., Scripta Mater., 62 (2010), 349.CrossRefGoogle Scholar
  33. [33]
    Zhang R.F., Veprek S., Mat. Sci. Eng. A-Struct., 448 (2007), 111.CrossRefGoogle Scholar
  34. [34]
    Serrano J., Rubio A., Hernandez E., Munoz A., Mujica A., Phys. Rev. B, 62 (2000), 16612.CrossRefGoogle Scholar
  35. [35]
    Xia Q., Xia H., Ruoff A.L., J. Appl. Phys., 73 (1993), 8198.CrossRefGoogle Scholar
  36. [36]
    Kim J.O., Achenbach J.D., Mirkarimi P.B., Shinn M., Barnett S.A., J. Appl. Phys., 72 (1992), 1805.CrossRefGoogle Scholar
  37. [37]
    Lazar P., Redinger J., Podloucky R., Phys. Rev. B, 76 (2007), 174112.CrossRefGoogle Scholar
  38. [38]
    Chen K., Bielawski M., Surf. Coat. Tech., 203 (2008), 598.CrossRefGoogle Scholar
  39. [39]
    Yang Y., Lu H., Yu C., Chen J.M., J. Alloy. Compd., 485 (2009), 542.CrossRefGoogle Scholar
  40. [40]
    Kazan M., Moussaed E., Nader R., Masri P., Phys. Status Solidi C, 4 (2007), 204.CrossRefGoogle Scholar
  41. [41]
    Peng F., Chen D., Fu H., Cheng X., Physica B, 403 (2008), 4259.CrossRefGoogle Scholar
  42. [42]
    Ahuja R., Eriksson O., Wills J. M., Johansson B., Phys. Rev. B, 53 (1996), 3072.CrossRefGoogle Scholar
  43. [43]
    Stampfl C., De Walle C.G.V., Phys. Rev. B, 59 (1999), 5521.CrossRefGoogle Scholar
  44. [44]
    Zoroddu A., Bernardini F., Ruggerone P., Fiorentini V., Phys. Rev. B, 64 (2001), 045208.CrossRefGoogle Scholar
  45. [45]
    Schilfgaarde M., Sher A., Chen A.B., J. Cryst. Growth, 178 (1997), 8.CrossRefGoogle Scholar
  46. [46]
    Schonberg N., Acta Chem. Scand., 8 (1954), 213.CrossRefGoogle Scholar
  47. [47]
    Zhukov V.P., Gubanov V.A., Jepsen O., Christensen N.E., Andersen O.K., J. Phys. Chem. Solids, 49 (1988), 841.CrossRefGoogle Scholar
  48. [48]
    Prilliman S.G., Clark S.M., Alivisatos A.P., Karvankova P., Veprek S., Mat. Sci. Eng. A-Struct., 437 (2006), 379.CrossRefGoogle Scholar
  49. [49]
    Zhang R.F., Sheng S.H., Veprek S., Phys. Rev. B, 76 (2007), 075208.CrossRefGoogle Scholar
  50. [50]
    Haines J., Leger J.M., Bocquillon G., Annu. Rev. Mater. Res., 31 (2001), 1.CrossRefGoogle Scholar
  51. [51]
    Pugh S.F., Philos. Mag., 45 (1954), 823.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Meriem Fodil
    • 1
  • Amine Mounir
    • 2
  • Mohammed Ameri
    • 1
  • Hadj Baltache
    • 2
  • Bachir Bouhafs
    • 3
  • Y. Al-Douri
    • 4
  • Ibrahim Ameri
    • 5
  1. 1.Laboratory Physico-Chemistry of Advanced MaterialsUniversity of Djillali LiabesSidi-Bel-AbbesAlgeria
  2. 2.Laboratoire de Physique Quantique de la Matière et de la Modélisation Mathématique (LPQ3M), Faculté des SciencesUniversité de MascaraMascaraAlgeria
  3. 3.Modeling and Simulation in Materials Science Laboratory, Physics DepartmentUniversity of Sidi Bel-AbbesSidi Bel-AbbesAlgeria
  4. 4.Institute of Nono Electronic EngineeringUniversity Malaysia PerlisKangar, PerlisMalaysia
  5. 5.Department of Physics, Faculty of Exact SciencesUniversity of Djillali LiabesSidi Bel AbbesAlgeria

Personalised recommendations