Skip to main content

Hole transport in organic field-effect transistors with active poly(3-hexylthiophene) layer containing CdSe quantum dots

Abstract

Hybrid field-effect transistors (FETs) based on poly(3-hexylthiophene) (P3HT) containing CdSe quantum dots (QDs) were fabricated. The effect of the concentration of QDs on charge transport in the hybrid material was studied. The influence of the QDs capping ligand on charge transport parameters was investigated by replacing the conventional trioctylphosphine oxide (TOPO) surfactant with pyridine to provide closer contact between the organic and inorganic components. Electrical parameters of FETs with an active layer made of P3HT:CdSe QDs blend were determined, showing field-effect hole mobilities up to 1.1×10−4 cm2/Vs. Incorporation of TOPO covered CdSe QDs decreased the charge carrier mobility while the pyridine covered CdSe QDs did not alter this transport parameter significantly.

This is a preview of subscription content, access via your institution.

References

  1. Braga D., Horowitz G., Adv. Mater. 21/14–15 (2009), 1473.

    Article  Google Scholar 

  2. Wen Y.G., Liu Y.Q., Guo Y.L., Yu G., Hu W.P., Chem. Rev. 111/5 (2011), 3358.

    Article  Google Scholar 

  3. Ortiz R.P., Facchetti A., Marks T.J., Chem. Rev. 110/1 (2010) 205.

    Article  Google Scholar 

  4. Salleo A., Mater. Today 10/3 (2007) 38.

    Article  Google Scholar 

  5. Kruszynska M., Knipper M., Kolny-Olesiak J., Borchert H., Parisi J., Thin Solid Films 519/21 (2011) 7374.

    Article  Google Scholar 

  6. Farva U., Park C., Sol. Energy Mater. Sol. Cells 94/2 (2010) 303.

    Article  Google Scholar 

  7. Sharma S.N., Kumar U., Singh V.N., Mehta B.R., Kakkar R., Thin Solid Films 519/3 (2010) 1202.

    Article  Google Scholar 

  8. Aldakov D., Chandezon F., De Bettignies R., Firon M., Reiss P., Pron A., Eur. Phys. J.-Appl. Phys 36/3 (2006) 261.

    Article  Google Scholar 

  9. Choi H.J., Yang J.K., Park H.H., Thin Solid Films 494/1–2 (2006) 207.

    Article  Google Scholar 

  10. Liu I.S. et al., J. Mater. Chem. 18/6 (2008) 675.

    Article  Google Scholar 

  11. Seo J., Kim W.J., Kim S.J., Lee K.S., Cartwright A.N., Prasad P.N., Appl. Phys. Lett. 94/13 (2009) 133302.

    Article  Google Scholar 

  12. Li Q.W., Sun B.Q., Kinloch I.A., Zhi D., Sirringhaus H., Windle A.H., Chem. Mat. 18/1 (2006) 164.

    Article  Google Scholar 

  13. Milliron D.J., Alivisatos A.P., Pitois C., Edder C., Frechet J.M.J., Adv. Mater. 15/1 (2003) 58.

    Article  Google Scholar 

  14. Heinemann M.D. et al., Adv. Funct. Mater. 19/23 (2009) 3788.

    Article  Google Scholar 

  15. Choi S.H. et al., J. Photochem. Photobiol. A-Chem. 179/1–2 (2006) 135.

    Article  Google Scholar 

  16. Choi H.J., Yang J.K., Yoon S., Park H.H., Appl. Surf. Sci. 244/1–4 (2005) 92.

    Article  Google Scholar 

  17. Xu J. et al., J. Am. Chem. Soc. 129/42 (2007) 12828.

    Article  Google Scholar 

  18. Choudhury K.R., Samoc M., Patra A., Prasad P.N., J. Phys. Chem. B 108/5 (2004) 1556.

    Article  Google Scholar 

  19. Nishioka M., Chen Y., Goldman A.M., Appl. Phys. Lett. 92/15 (2008) 153308.

    Article  Google Scholar 

  20. Topp K. et al., J. Phys. Chem. A 114/11 (2010) 3981.

    Article  Google Scholar 

  21. Xu Z.X., Roy V.A.L., Stallinga P., Muccini M., Toffanin S., Xiang H.F., Che C.M., Appl. Phys. Lett. 90/22 (2007) 223509.

    Article  Google Scholar 

  22. Remashan K., Choi Y.S., Park S.J., Jang J.H., J. Electrochem. Soc. 157/12 (2010) II1121.

    Google Scholar 

  23. Remashan K., Choi Y.S., Park S.J., Jang J.H., Jpn. J. Appl. Phys. 50/4 (2011) 04DJ08.

    Article  Google Scholar 

  24. Chiu M.Y., Chen C.C., Sheu J.T., Wei K.H., Org. Electron. 10/5 (2009) 769.

    Article  Google Scholar 

  25. Nyk M., Palewska K., Kepinski L., Wilk K.A., Strek W., Samoc M., J. Lumines. 130/12 (2010) 2487.

    Article  Google Scholar 

  26. Bielecka U., Lutsyk P., Janus K., Sworakowski J., Bartkowiak W., Org. Electron. 12/11 (2011) 1768.

    Article  Google Scholar 

  27. Sze S., Ng K. (Eds.), Physics of Semiconductor Devices, Wiley & Sons Ltd., New York, 1997.

    Google Scholar 

  28. Stallinga P. (Ed.), Electrical Characterization of Organic Electronic Materials and Devices, John Wiley & Sons Ltd., Chichester, UK, 2009.

    Google Scholar 

  29. Xu W.T., Rhee S.W., J. Mater. Chem. 19/29 (2009) 5250.

    Article  Google Scholar 

  30. Ng K. (Ed.), Compliete guide to semiconductor devices, John Wiley & Sons Ltd., New York, 2002.

    Google Scholar 

  31. Scheinert S., Paasch G., Schrodner M., Roth H.K., Sensfuss S., Doll T., J. Appl. Phys. 92/1 (2002) 330.

    Article  Google Scholar 

  32. Arkhipov V.I., Heremans P., Emelianova E.V., Bassler H., Phys. Rev. B 71/4 (2005) 045214.

    Article  Google Scholar 

  33. Chen C.C., Chiu M.Y., Sheu J.T., Wei K.H., Appl. Phys. Lett. 92/14 (2008) 143105.

    Article  Google Scholar 

  34. Huynh W.U., Dittmer J.J., Libby W.C., Whiting G.L., Alivisatos A.P., Adv. Funct. Mater. 13/1 (2003) 73.

    Article  Google Scholar 

  35. Lee H.J. et al., J. Phys. Chem. C 112/30 (2008) 11600.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Bielecka.

About this article

Cite this article

Bielecka, U., Lutsyk, P., Nyk, M. et al. Hole transport in organic field-effect transistors with active poly(3-hexylthiophene) layer containing CdSe quantum dots. Mater Sci-Pol 31, 288–297 (2013). https://doi.org/10.2478/s13536-013-0101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13536-013-0101-0

Keywords

  • organic field effect transistor
  • quantum dots
  • poly(3-hexylthiophene)
  • hybrid material