Materials Science-Poland

, Volume 31, Issue 1, pp 101–107 | Cite as

Research into the relationship between the surface topography, texture and mechanical properties of PVD-Cu/Ni multilayers

  • B. Kucharska
  • E. Kulej
  • G. Pyka
  • J. Kanak
  • T. Stobiecki
Research Article
  • 87 Downloads

Abstract

The paper presents the results of structural examinations and mechanical tests of Cu/Ni multilayers fabricated by the magnetron sputtering method. The investigated multilayers were differentiated by Ni sublayer thickness (1, 3 and 6 nm), while the retaining Cu sublayer thickness was unchanged (2 nm). Measurements demonstrated that the multilayers were strongly textured in the direction of their growth [111], with the thinnest multilayer (Cu/Ni = 2/1) showing a stronger texture. Stronger texturing was associated with greater surface roughness. Multilayers with the largest thickness had higher hardness and Young’s modulus. The properties of Cu/Ni multilayers depended both on the thickness of their sublayers, as well as on their total thickness.

Keywords

Cu/Ni multilayers thermal stability X-ray diffraction texture atomic force microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kanak J., Stobiecki T., Thomas A., Schmalhorst J., Reiss G., Vacuum, 82 (2008), 1057.CrossRefGoogle Scholar
  2. [2]
    Gerrit Van Der Laan, Curr. Opin. Solid. St. M., 10 (2006), 120.CrossRefGoogle Scholar
  3. [3]
    Barshilia H.C., Rajam K.S., Surf. Coat. Tech., 155 (2002), 195.CrossRefGoogle Scholar
  4. [4]
    Liu Y, Buord D., Wang H., Sun C., Hang X., Acta Mat., 59 (2011), 1924.CrossRefGoogle Scholar
  5. [5]
    Jang B.K., Matsubara H., Mater.Lett., 59 (2005), 3462.CrossRefGoogle Scholar
  6. [6]
    Platt C.L., Wierman K.W., J. Magn. Magn. Mater., 295 (2005), 241.CrossRefGoogle Scholar
  7. [7]
    Kucharska B., Kulej E., Witkowska M., Nitkiewicz Z., Inżynieria MateriaŁowa, 3 (2010), 439.Google Scholar
  8. [8]
    Kucharska B., Kulej E., Kanak J., Opt. Appl., 39, (2009), 881.Google Scholar
  9. [9]
    Kulej E., Kucharska B., Pyka G., Gwózdzik M., Cent. Eur. J. Phys., 9(6) (2011), 1421.CrossRefGoogle Scholar
  10. [10]
    Dús-Sitek M., Nabialek M., Ga’gorowska B., Opt. Appl., 39 (2009), 645.Google Scholar
  11. [11]
    Ga’gorowska B., Duś-sitek M., Nabialek M., Opt. Appl., 39 (2009), 839.Google Scholar
  12. [12]
    Malzbender J., J. Eur. Ceram. Soc., 23 (2003), 1355.CrossRefGoogle Scholar
  13. [13]
    Oliver W.C., Pharr G.M., J. Mater. Res., 7 (1992), 1564.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • B. Kucharska
    • 1
  • E. Kulej
    • 1
  • G. Pyka
    • 2
  • J. Kanak
    • 3
  • T. Stobiecki
    • 3
  1. 1.Institute of Materials EngineeringCzestochowa University of TechnologyCzestochowaPoland
  2. 2.Department of Metallurgy and Materials EngineeringKatholieke Universiteit LeuvenHeverleeBelgium
  3. 3.Department of ElectronicsAGH University of Science and TechnologyKrakówPoland

Personalised recommendations