Materials Science-Poland

, Volume 29, Issue 2, pp 127–134 | Cite as

Synthesis and characterization of aluminosilicate and gallosilicate sodalites containing acetate ions

Article

Abstract

One pot synthetic aluminosilicate and gallosilicate sodalites containing acetate guest anion have been synthesized successfully under hydrothermal conditions at 100 °C. This paper deals with the comparison of X-ray powder data with single crystal data for Na8[AlSiO4]6(CH3COO)2 and the characterization of a new Na8[GaSiO4]6(CH3COO)2 sodalite. The products obtained were characterized by IR, X-ray powder diffraction, MAS NMR, SEM and thermogravimetry technique. Crystal structures were refined in the space group \(P\bar 43n\) from X-ray powder data using the Rietveld refinement method with the unit cell parameter a = 9.0679 Å, for aluminosilicate and a = 9.2119 Å, for gallosilicate sodalite. The aluminosilicate and gallosilicate framework shows regular bonding with bond angles of Al-O-Si = 146.241°, Ga-O-Si = 141.294°. 29Si MAS NMR chemical shift values verify Al/Si and Ga/Si ordering of the framework constituents.

Keywords

hydrothermal synthesis gallosilicate aluminosilicate acetate Rietveld refinement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Pauling L., Z. Kristallogr., 74 (1930), 213.Google Scholar
  2. [2]
    Barrer R.M., Cole J.F., J. Chem. Soc. A, (1970), 1516.Google Scholar
  3. [3]
    Veit T., Buhl J.CH., Haffmann W., Cat. Today, 8 (1991), 405.CrossRefGoogle Scholar
  4. [4]
    Buhl J.CH., Engelhart G., Felsche L., Zeolites, 9 (1989), 40.CrossRefGoogle Scholar
  5. [5]
    Borhade A.V., Wakchaure S.G., Inter. J. Chem., 2(1) (2010), 3.Google Scholar
  6. [6]
    Van Doorn C.Z., Schipper D.J., Bolwijn P.T., J. Electrochem. Soc., 119 (1972), 85.CrossRefGoogle Scholar
  7. [7]
    Mclaughan S.D., Marshall D.J., Phys. Lett., 32A (1970), 343.Google Scholar
  8. [8]
    Bolwijn P.T., Schipper D.J., van Doorn C.Z., J. Appl. Phys., 43 (1972), 132.CrossRefGoogle Scholar
  9. [9]
    Kowalak S., Pawlowska M., Colloids surfaces A, Physico. Chem. Eng. Aspects, 101 (1995), 179.CrossRefGoogle Scholar
  10. [10]
    Chang I., J. Electrochem. Soc., 121 (1974), 815.CrossRefGoogle Scholar
  11. [11]
    Ogura M., Morozumi K., Elangovan S.P., Tanada H., Ando H., Okubo T., App. Cata.B Env., 77(3–4) (2008), 294.CrossRefGoogle Scholar
  12. [12]
    Sieger P, Schneider A.M., Wiebcke M., Behrens P., Felsche J., Engelhardt G., Chem. Mater., 7(1) (1995), 163.CrossRefGoogle Scholar
  13. [13]
    Mead P.J., Weller M.T., Micro. Mate., 3–3 (1984), 281.Google Scholar
  14. [14]
    Johnson G.M., Mead P.J., Weller M.T., Micro. Meso. Mate., 38(2–3) (2000), 445.CrossRefGoogle Scholar
  15. [15]
    Taylor D., Contrib. Min. Petrol., 51 (1975), 39.CrossRefGoogle Scholar
  16. [16]
    Buhl J.CH., Stief F., Felchtelkord M., Gesing T.M., Taphorn U., Taake C., J. Alloys and comp., 305 (2000), 93.CrossRefGoogle Scholar
  17. [17]
    Kirk R.D., J. Electrchem. Soc., 101 (1954), 461.CrossRefGoogle Scholar
  18. [18]
    Johnson G.M., Mead P.J., Dann S.E., Weller M.T., J. Phys. Chem. B, 104 (2000), 1454.CrossRefGoogle Scholar
  19. [19]
    Loewentein W., Am. Mineral., 39 (1954), 92.Google Scholar
  20. [20]
    Smith J.V., Blackwell C., Nature, 303 (1983), 223.CrossRefGoogle Scholar
  21. [21]
    Ramdas S., Klinowski J., Nature, 308 (1984), 521.CrossRefGoogle Scholar
  22. [22]
    Radegia R., Engelhardt G., Chem. Phys. Lett., 114 (1985), 28.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  1. 1.Research Centre, Post Graduate Department of ChemistryHPT Arts and RYK Science CollegeNasikIndia
  2. 2.Department of ChemistryPVGs College of EngineeringNashikIndia

Personalised recommendations