Skip to main content
Log in

Mineralogy, geochemistry and petrogenesis of the V-Ti-bearing and chromiferous magnetite deposits hosted by Neoarchaean Channagiri Mafic-Ultramafic Complex, Western Dharwar Craton, India: Implications for emplacement in differentiated pulses

  • Topical Issue
  • Published:
Central European Journal of Geosciences

Abstract

The Channagiri Mafic-Ultramafic Complex occupies lowermost section of the Neoarchaean Shimoga supracrustal group in the Western Dharwar Craton. It is a segmented body occupying the interdomal troughs of granitoids. The magnetite deposits occur in the northeastern portion; typically occupying the interface zone between gabbro and anorthositic. Mineralogically, the deposits are simple with abundant magnetite and ilmenite. Hogbomite is a consistent minor mineral. Magnetites are typically vanadiferous (0.7–1.25% V2O5). Ilmenite consistently analyses more MgO and MnO than coexisting magnetite. Chlorite, almost the only silicate present; lies in the range of ripidolite, corundophilite and sheridanite. The chromiferous suit occupying eastern side of Hanumalapur block (HPB) contains Fe-Cr-oxide analysing 37.8–11.9% Cr2O3 and 40.5–80% FeOt. In these too, chlorite, typically chromiferous (0.6–1.2% Cr2O3), is the most dominant silicate mineral. Geochemistry of V-Ti-magnetite is dominated by Fe, Ti and V with Al, Si, Mg and Mn contributing most of the remaining. Cr, Ni, Zn, Co, Cu, Ga and Sc dominate trace element geochemistry. The Cr-magnetite is high in Cr2O3 and PGE. Two separate cycles of mafic magmatism are distinguished in the CMUC. The first phase of first cycle, viz., melagabbro-gabbro, emplaced in the southeastern portion, is devoid of magnetite deposits. The second phase, an evolved ferrogabbroic magma emplaced in differentiated pulses, occupying northeastern portion of the complex, consists of melagabbro→gabbro-anorthosite→V-Ti magnetite→ferrogabbro sequence. Increase in oxygen fugacity facilitated deposition of V-Ti magnetite from ferrogabbroic magma pulse emplaced in late stages. The second cycle of chromiferous PGE mineralized suite comprises fine-grained ultramafite→alternation of pyroxinite-picrite→Crmagnetite sequence formed from fractionation of ferropicritic magma. HPB also includes >65m thick sill-like dioritic phase at the base of the ferriferous suit and a sinuous band of coarse-grained ultramafite enclosed within the chromiferous suit; both unrelated to the two mafic magmatic cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smeeth W.F and Sampath Iyengar P., Mineral resources of Mysore, Bull Mysore. Geol. Dept. 7, 1916.

  2. Vasudev V.N and Ranganathan N., Vanadium and sulphide bearing titaniferous magnetite bodies in Western Dharwar Craton, In Geokarnataka: Ravindra B.M and Ranganathan N., (Eds) Karnataka Asst. Geologist Association, Bangalore, 1994, 168–181

    Google Scholar 

  3. IBM, Indian Minerals Yearbook 2011, Part II, 50th Ed., Vanadium, 2012, 77-1–5, State review. 11–14, 1–16

    Google Scholar 

  4. Dry R.J., Bates C.P and Price D.P., HIsmelt-the future in direct iron making, Proc 58th Iron making Conference, Chicago, 21–24 March, 1999, 361 p

  5. Forge Resources: Qtly Rep. for the period 1 July–30 Sept 2012, Bolla Bolla V-Ti-magnetite project aided at producing (1) pig iron, (2) ferrovanadium and (3) titanium slag.

  6. Pilote J., HIsmelt, Adapted technology for Ti/V magnetite: Non-blast furnace forum in Panzhihua City, Nov 2010.

    Google Scholar 

  7. Pilote J., Future of HIsmelt In India: Appropriate technology for the available resource of the country, 2010.

    Google Scholar 

  8. Ziguo H., Hongcai F., Lian L. and Turner S., Comprehensive utilization of vanadium-titanium magnetite deposits in China has come to the new level, Acta Geologica Sinica, 2012, 87, 286–287

    Article  Google Scholar 

  9. Slater H.K., Report on the geological survey of portions of Tarikere, Channagiri and Shimoga taluks during the field season 1904–05, Rec. Mysore Geol. Dept., 1905, 6, 5–27

    Google Scholar 

  10. Slater H.K., Report on survey work in Holalkere, Davangere and Channagiri taluks, Mysore Geol. Dept., Rec., 1912, 12, 1–44

    Google Scholar 

  11. Jayaram B., Note on revision of survey in parts of Kadur, Shimoga and Channagiri taluks., Rec. Mysore. Geol. Dept., 1915, 14, 16–107

    Google Scholar 

  12. Channappa B.G. and Subramanya M., Vanadium bearing titaniferous magnetite ores of Ubrani area, Shimoga district, Dept of Mines and Geology, Govt. of Karnataka, Geological studies 1973, 62, 11

    Google Scholar 

  13. Chayapathi N., Geology and ore reserves of Vanidiferous magnetite deposits in Channagiri taluk, Shimoga district, Karnataka, Proc. Symp. Geol. etc. of Ferrous and Ferro-alloy minerals, Bangalore, 1976, 55–60

    Google Scholar 

  14. Chayapathi N., Investigations for Vanadiferrous titanomagnetite and associated copper in the Masanikere, Taverekere and Magyathahalli areas, Channagire taluk, Shimoga district, Karnataka, Geol. Surv. India, Progress Report for the field season, 1984, 74–79

    Google Scholar 

  15. Ramiengar A.S and Chayapathi N., Vanadiferous magnetite deposit near Masanikere, Channagiri taluk, Shimoga district, Karnataka, Indian Minerals, 1977, 31, 1–5

    Google Scholar 

  16. Ramiengar A.S., Chayapathi N., Raghunandan K.R and Rao M.S., Mineralogy and geochemistry of the vanadiferous titanomagnetite deposit and associated copper mineralization in gabbro-anorthosite near Masanikere, Shimoga district, Karnataka, India, In: Archaean Geochemistry: Proceedings of the symposium on Archaean geochemistry, Hyderabad, 1978, 395–406

    Chapter  Google Scholar 

  17. Channappa B.G. and Subramanya M., Vanadium bearing titaniferous magnetite ore of Taverekere and Gourapur areas, Channagiri taluk, Shimoga district, Dept. of Mines and Geology, Govt. of Karnataka, Geological studies No. 129, 1979, 9p

    Google Scholar 

  18. Jayaraj K.R., V-Ti-Fe deposits of Ubrani, Tavarekere, Masanikere, Devaranarsipur (Shimoga district) and Mulemane (North Kanara district) areas, Karnataka, Ph.D thesis submitted to Karnatak University, Dharwad, Karnataka, India (Unpublished), 1992, 103p

    Google Scholar 

  19. Jayaraj K.R., Khanadali S.D., Devaraju T.C and Spiering B., A study of Hogbomite in the V-Ti-Fe deposits of Karnataka, Jour. Geol. Soc. India, 1995, 45, 57–64

    Google Scholar 

  20. Jayaraj K.R., Khanadali S.D., Devaraju T.C and Spiering B., A study of Chromiferous Magnetite and Titanomagmetite in the V-Ti Magnetite deposits of Magyatahalli, Shimoga district, Karnataka, Indian Mineralogist, 1996, 30, 59–66

    Google Scholar 

  21. Alapieti T.T., Halkoaho T.A.A., Devaraju T.C., Chromite-hosted PGE mineralization in the Channagiri area, Karnataka State, India, VIIth International Platinum Symposium, 1994, 1–4 Aug 1994, Moscow (Abstract), 3–4

    Google Scholar 

  22. Devaraju T.C., Alapieti T.T., Halkoaho T.A.A., Jayaraj K.R., Khanadali S.D., Evidence of PGE mineralization in the Channagiri mafic complex, Shimoga district, Karnataka, Jour. Geol. Soc. India, 1994, 43, 317–318

    Google Scholar 

  23. Alapieti T.T., Devaraju T.C and Kaukonen R.J., PGE mineralization in the late Archaean iron-rich maficultramafic Hanumalapur Complex, Karnataka, India, Mineral & Petrol., 2008, 92, 99–128

    Article  Google Scholar 

  24. Devaraju T.C., Investigations of Archaean layered mafic-ultramafic complexes of Shimoga Schist belt of Karnataka with special reference to evidence of Platinum mineralization. Report (unpublished) submitted to Department of Science and Technology, Govt. of India, 2000, 66p

    Google Scholar 

  25. Devaraju T.C., Alapieti T.T., Kaukonen R.J and Sudhakara T.C., Petrological and PGE mineralization study of the Channagiri mafic-ultramafic complex, Shimoga Supracrustal belt, Karnataka, Jour. Geol. Soc. India, 2007, 70, 535–556

    Google Scholar 

  26. Chadwick B., Vasudev V.N. & Jayaram S., Stratigraphy and structure of late Archaean Dharwar volcanic and sedimentary rocks and their basement in a part of Shimoga basin east of Bhadravathi, Karnataka, Jour. Geol. Soc. India, 1988, 32, 1–19

    Google Scholar 

  27. Devaraju T.C., Alapieti T.T., Kaukonen R.J., Geochemistry of ultramafic lenses in the granitoids of the southeastern flanks of Shimoga supracrustal belt (Karnataka) with a note on the distribution of platinum-group elements and minerals. Jour. Geol. Soc. India, 2004, 63, 371–386

    Google Scholar 

  28. Taylor P.N., Chadwick B., Moorbath S., Ramakrishnan M and Vishwanatha M.N., Petrology, chemistry and isotopic ages of Peninsular gneiss, Dharwar acid volcanic rocks and the Chitradurga granite with special reference to the late Archaean evolution of the Karnataka craton, Southern India, Precamb. Res., 1984, 23, 349–375

    Article  Google Scholar 

  29. Wager L.R and Brown G.M., Layered Igneous rocks, Oliver and Boyd, 1968, 588p

    Google Scholar 

  30. Stevens R.E., Compositions of some chromites of the western hemisphere, Am. Mineral., 1944, 29, 1–34

    Google Scholar 

  31. Roach T.A., Roeder P.L., and Hulbert L.J., Composition of chromite in the upper chromitite, Muskox layered intrusion, Northwest territories, Can. Mineralogist, 1998, 36, 117–135

    Google Scholar 

  32. Yong Z, Jian-xing L, Gonf-Jin C, Zhang-Gen L, Mansheng C, Xian-xin X, Experiment study on sintering process optimization of high chromium vanadiumtitanium magnetite (Abstract-p363) In: Characterization of minerals, metals and materials, 2013, Wiley

    Google Scholar 

  33. Himmilberg G.R and Ford A.B., Iron-Titanium oxides of the Dufek intrusion, Antartica, Am. Mineral, 1977, 62, 623–633

    Google Scholar 

  34. Mathison C.I., Magnetites and ilmenites in the Somerset Dam layered basic intrusion, Southeastern Queensland, Lithos, 1975, 8, 93–111

    Google Scholar 

  35. Neumann E.R., The distribution of Mn2+ and Fe 2+ between ilmenites and magnetites in igneous rocks, Am. Jour. Sci., 1974, 274, 1074–1088

    Article  Google Scholar 

  36. Friedman G.M., Study of Hogbomite. Am. Mineral, 1952, 37, 600–608

    Google Scholar 

  37. Zakrzewski M.A., Hogbomite from the Fe-Ti deposit of Liganga (Tanzania). Neues Jahrb Mineral Monatsh, 1977, H8, 373–380

    Google Scholar 

  38. Coolen J.J.M.M.M., Hogbomite and aluminium spinel from some metamorphic rocks and Fe-Ti ores, Neues Jahrbuch fur Mineralogie Monatshifte, 1981, 373–384

    Google Scholar 

  39. Hey M.H., A new review of the chlorites, Mineral Mag., 1954, p277

    Google Scholar 

  40. Barnes S.J., Boyd R., Korneliussen, A., Nillson L.P., Opten M., Pedersen R.B., Robins B., The use of mantle normalization and metal ratios in discriminating between the effects of partial melting, crystal fractionation and sulphide segregation on platinumgroup elements, gold, nickel and copper: examples from Norway. In: Pichard, H.M., Potts P.J., Bowels J.F.W., Cabri S.J. (Eds), Geo-platinum, Amsterdam, 1987, 113–143

  41. Jensen L.S., A new cation plot for classifying subalkaline volcanic rocks, Ontario Dept. Mines Misc, paper No. 66, 1976, 22p

    Google Scholar 

  42. Viljoen, M.J., Viljoen R.P., Pearton T.N., Nature and distribution of Archaean komatiite volcanics in South Africa, In: N.T. Arndt and E.G. Nisbet (Eds.) Komatiites, Allen and Unwin, London, 1982, 53–79

    Google Scholar 

  43. Viljoen, M.J., Viljoen R.P., Evidence for the existence of mobile extrusive peridotite magma from the Komati formation of the Onverwacht Group, Geol. Soc. S. Africa, Sec. pub. 2, Upper Mantle Project, 1969, 87–112

    Google Scholar 

  44. Pearce J.A., Basalt geochemistry used to investigate past tectonic environments, Tectonophysics, 1975, 25, 41–67

    Article  Google Scholar 

  45. Hall A.L., The Bushweld Igneous complex of the central Transvaal, S. African Geol. Sur. Memoir, 1932, 28, Pretoria

    Google Scholar 

  46. Bateman A.M., The formation of late magmatic oxide ores, Eco. Geol., 1951, 46, 404–426

    Article  Google Scholar 

  47. Osborn E.F., The role of oxygen pressure in the crystallization and differentiation of basaltic magma, Am. Jour. Sci., 1959, 257, 609–647

    Article  Google Scholar 

  48. Buddington A.F. and Lindsley D.H., Iron-titanium oxide minerals and their synthetic equivalents, Jour. Petrol, 1964, 5, 310–357

    Article  Google Scholar 

  49. Lister G.F., The composition and origin of selected iron-titanium deposits, Econ. Geol., 1966, 61, 275–310

    Article  Google Scholar 

  50. Collins L.G., Regional crystallization and the formation of magnetite concentration, Dover magnetite district, New Jersey, Econ. Geol., 1969, 64, 17–33

    Google Scholar 

  51. Cawthorn R.G. & Mc Carthy T.S., Bottom crystallization and diffusion control in layered complexes: Evidence from Cr distribution in magnetite from the Bushveld Complex, Geol. Soc. S. Africa. Trans., 1981, 84, 41–50

    Google Scholar 

  52. Cawthorn R.G., Layered Intrusions, Elsevier, Amsterdam, 1996, 531p

    Google Scholar 

  53. Duchesne J.C., Fe-Ti deposits in Rogaland anorthosites (South Norway): Geochemical Characteristics and problems of interpretation, Mineralium Deposita, 1999, 34, 182–194

    Article  Google Scholar 

  54. Zhou M.F., Chen W.T., Wang C.Y., Prevec S.A., Liu P.P and Howarth G.H., Two stages of immiscible liquid separation in the formation od Panzhihua-type Fe-Ti-V oxide deposits, SW China, Geoscience Frontiers, 4, 2013, 481–502

    Article  Google Scholar 

  55. Zhou M.F., Robinson P.T., Lesher C.M., Keays R.R., Zhang C.J. and Malpas J., Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China, Jour. Petrol., 2005, 46, 2253

    Article  Google Scholar 

  56. Pang K.N., Zhou M.F., Lindsley D., Zhao D and Malpas J., Origin of Fe-Ti oxide ores in the mafic intrusions: Evidence from the Panzhihua intrusion, SW China, Jour. Petrol., 2008, 49, 295–313

    Article  Google Scholar 

  57. Zhang M., Niu Y., Hu P., Volatiles in the mantle lithosphere: modes of occurrence and chemical compositions, In: Anderson J.E and Coates R.W (Eds.) The Lithosphere: Geochemistry, geology and geophysics, Nova Science Publishers Inc, New York, 2009, 171–212

    Google Scholar 

  58. Hou T., Zheng Z., Encarnacion J and Santosh M., Petrogenesis and metallogenesis of the Taihe gabbroic intrusion associated with Fe-Ti oxide ores in the Panxi district, Emeishan large igneous province, Ore Geol. Review, 2012, 49, 109–127

    Article  Google Scholar 

  59. Dong H., Xing C and Wang C.Y., Textures and mineral compositions of the Xinjie layered intrusions, SW China: Implications for the origin of magnetite fractionation process of Fe-Ti-rich basaltic magmas, Frontiers, 2013, 4, 503–515

    Google Scholar 

  60. Gross G.A., Grower C.F and Lefebure D.V., Magmatic Ti-Fe ± V oxide deposits, British Columbia Geol. Surv. Geol. Field work Mo44, 1997, 241–1, 241–3

    Google Scholar 

  61. Thy P., Jakobsen N.N. and Wilson J.R., Fine-scale graded layers in the Fongen-Hyllingen gabbroic complex, Norway, Can. Mineral., 1988, 26, 235–243

    Google Scholar 

  62. Dunn J.A and Dey A.K., Vanadium bearing titaniferous iron ores in Singhbhum and Mayurbhanj, India. Trans. Min. Geol. Inst. India, 1937, 31, p30

    Google Scholar 

  63. Kolker A, Mineralogy and geochemistry of Fe-Ti oxide and apatite (nelsonite) deposits and evaluation of liquid immiscibility hypothesis, Econ. Geol., 1982, 77, 1146–1158

    Article  Google Scholar 

  64. Philpotts A.R., Origin of certain iron-titanium oxide and apatite rocks, Econ. Geol., 1967, 62, 303–315

    Article  Google Scholar 

  65. Reynolds I.M., The nature and origin of titaniferous magnetite-rich layers on the upper zone of the Bushveld complex: A review and synthesis, Econ. Geol., 1985, 80, 1089–1108

    Article  Google Scholar 

  66. Hill R and Roeder P., The crystallization of spinel from basaltic liquids as a function of oxygen fugacity, Jour. Geol., 1974, 82, 709–729

    Article  Google Scholar 

  67. Irvine T.N., Crystallization sequence in the Musox intrusion and other layered intrusions — II. Origin of chromitite layers and similar deposits of other magmatic ores. Geochem. Cosmochem. Acta, 1975, 39, 991–1020

    Article  Google Scholar 

  68. Molyneux T.G., The geology of the area in the vicinity of Magnet Heights, east Transvaal, with special reference to the magnetic iron ore, Mineral. Mag., 1972, 38, 863–871

    Article  Google Scholar 

  69. Muan A., Osborn E.F., Phase equlibria at liquidus temperatures in the system MgO-FeO-Fe2O3-SiO2, Am. Ceramic Soc. Jour., 1956, 39, 121–140

    Article  Google Scholar 

  70. Roeder P.L and Osborn E.F., Experimental data for the system MgO-FeO-Fe2O3-CaAl2Si2O2 and their petrologic implications, Am. J. Sci., 1966, 264, 428–480

    Article  Google Scholar 

  71. Mei Y., Zhou M.F., Wang C.Y., Pang K.N., Origin of giant magmatic Fe-Ti-V oxide deposits hosted in layered intrusions in the Pan-Xi area, Sichuan Province, SW China, Mineral deposits research: Meeting the Global Challenge, 2005, 458–461

    Google Scholar 

  72. Zhong H., Zhou X.H., Zhou M.F., Sun M and Liu B.G., Platinum group element geochemistry of the Hongge Fe-V-Ti deposit in the Pan Xi area, southwestern China, Mineral. Deposita, 2002, 37, 226–239

    Article  Google Scholar 

  73. Le Bass M.J., IUGS reclassification of the high-Mg and picritic volcanic rocks, Jour. Petrol., 2000, 41, 1467–1470

    Article  Google Scholar 

  74. Le Maitre R.W., Igneous rocks: A classification and glossary of terms, 2nd Ed. Cambridge University Press, 2002, 236p

    Book  Google Scholar 

  75. Irvine T.N and Barager W.R.A., A guide to the chemical classification of the common volcanic rocks, Canadian J. Earth Sci., 1971, 8, 523–548

    Article  Google Scholar 

  76. Xing C.M., Wang C.Y., Zhang M., Volatile and C-H-O isotope composition of a giant Fe-Ti-V oxide deposit in the Panxi region and their implications for source of volatiles and the origin of Fe-Ti oxide ores, Science China Earth, China, 2012, http//dz.dn.org/10.10007/s11430-012-4468-2

    Google Scholar 

  77. Zhang M, Niu Y, Su. S., Chemical and stable isotopic constraints on the nature and origin of volatiles in the sub-continental lithospheric mantle beneath China, Lithos, 2007, 96, 55–56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadasore C. Devaraju.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devaraju, T.C., Jayaraj, K.R., Sudhakara, T.L. et al. Mineralogy, geochemistry and petrogenesis of the V-Ti-bearing and chromiferous magnetite deposits hosted by Neoarchaean Channagiri Mafic-Ultramafic Complex, Western Dharwar Craton, India: Implications for emplacement in differentiated pulses. cent.eur.j.geo. 6, 518–548 (2014). https://doi.org/10.2478/s13533-012-0193-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13533-012-0193-9

Keywords

Navigation