Skip to main content
Log in

Architecture of Upper Cretaceous rhyodacitic hyaloclastite at the polymetallic Madneuli deposit, Lesser Caucasus, Georgia

  • Research Article
  • Published:
Central European Journal of Geosciences

Abstract

This study focuses on a well-exposed section of the Artvin-Bolnisi zone located in the open pit of the Madneuli ore deposit, Lesser Caucasus, Georgia. Detailed field and petrographic observations of the main volcano-sedimentary lithofacies of its Upper Cretaceous stratigraphic succession were carried out. Whole rock geochemistry studies support the interpretation of intense silicification of the rocks, and supports our petrographic studies of samples from the Madneuli open pit, including lobe-hyaloclastite described in detail during this study. A particular focus concerned lobe-hyaloclastite exposures in the Madneuli open pit, singled out for first time in this area of the Lesser Caucasus. Two types of hyaloclastite are recognized at the Madneuli deposit: hyaloclastite with pillow-like forms and hyaloclastite with glass-like selvages. The petrographic description shows a different nature for both: hyaloclastite with glass-like selvages represented by devitrification of volcanic glass, which is replaced by quartz and K-feldspar overgrowth of crystals in the groundmass and elongated K-feldspar porphyry phenocrysts. Perlitic cracks were identified during thin section observation. The Hyaloclastite with pillow-like forms consists of relicts of volcanic glass and large pumice clasts replaced by sericite. Key observations are presented in the case of lobe-hyaloclastite and their immediate host volcano-sedimentary environment to constrain their depositional setting. A paleoreconstruction of their environment is proposed, in which hyaloclastite record the interaction of magma emplaced in unconsolidated volcano-sedimentary rocks associated with a submarine rhyodacite dome, emplaced during several magmatic pulses. Our study shows that the predominant part of the host rock sequence of the Madneuli polymetallic deposit was deposited under submarine conditions, which is in agreement with volcanogenic massive sulfide models or transitional, shallow submarine magmatic to epithermal models that were proposed by previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yilmaz A., Adamia Sh., Chabukiani A., Chkhotua T., Erdogan K., Tuzcu S., Karabiyikoglu M., Structural correlation of the southern Transcaucasus (Georgia) — eastern Pontides (Turkey), Geological Society, London, Special Publications, 173, 2000, 171–182

    Article  Google Scholar 

  2. Bachaldin V., Tvalchrelidze G., Some regulations of formation and distribution of ore deposits in volcanogenic rocks (Southern Georgia). Proceedings of the Institution of Higher Education, Geological Prospecting, 1, 1963, 61–72 (in Russian)

    Google Scholar 

  3. Malinovsky E., Sokolov A., Lezhepiokov L., Structural-geological conditions and stages of formation of Madneuli copper-barite polymetallic deposit (Lesser Caucasus), Geology of Ore Deposits 4, 1987, 44–57

    Google Scholar 

  4. Gugushvili V., Omiadze G., Ignimbrite volcanism and ore mineralization (Bolnisi Ore District, the Lesser Caucasus), Geology of Ore Deposits, 2, 1988, 105–109 (in Russian)

    Google Scholar 

  5. Kekelia S., Ambokadze A., Ratman I., Volcanogenic deposits of base metals of paleoisland arc structures and method of their prediction, Metsniereba, Tbilisi, 1993, 0–96

  6. Moon C., Gugushvili V., Kekelia M., Kekelia S., Migineishvili R., Otkhmezuri Z., Ozgur N., Comparison of mineral deposits between Georgian and Turkish sectors of the Tethyanmetallogenic belt. In: Piestrzynski et al (eds), Mineral deposits at the Beginning of the 21st Century. 6th Biennial SGA Meeting Krakow, Poland, 26–29 August, 309–312, 2001

    Google Scholar 

  7. Kekelia S., Kekelia M., Otkhmezuri Z., Ozgur N., Moon C., Ore-forming systems in volcanogenicsedimentary sequences by the example of base metal deposits of the Caucasus and East PonticMetallotect. Bulletin of the Mineral Research and Exploration, 129, 2004, 1–16

    Google Scholar 

  8. Gugushvili V., Kutelia Z., Porphyry gold-copper system of the Bolnisi mining district and analysis of two types of gold mineralization. Proceedings of the International Workshop: gold and base metal deposits of the Mediterranean and the south Caucasus-challenges and opportunities, Tbilisi, 13–14

  9. Migineishvili R., Hybrid nature of the Madneuli Cu-Au deposit, Georgia. Bulgarian Academy of Sciences, proceedings of the 2005 Field Workshop, 127–132, 2012

    Google Scholar 

  10. Gialli S., The controversial polymetallicMadneuli deposit, Bolnisi district, Georgia: hydrothermal alteration and ore mineralogy. Unpublished M.Sc. thesis, University of Geneva, 2013, 1–143

    Google Scholar 

  11. Popkhadze N., Moritz R., Gialli S., Beridze T., Gugushvili V., Khutsishvili S., Major volcanosedimentary facies types of the Madneulipolymetallic deposit, Bolnisi district, Georgia: Implications for the host rock depositional environment. In: Erik Jonsson et al. (eds), Mineral deposit research for a hightech world, 12th SGA Meeting, 12–15 August 2013, Sweden, Uppsala, 2, 576–579

  12. Popkhadze N., Beridze T., Moritz R., Gugushvili V., Khutsishvili S., Facies analysis of the volcanosedimentary host rocks of the Cretaceous Madneuli massive sulphide deposit, Bolnisi district, Georgia. Bulletin of the Georgia National Academy of Sciences, 3, 2009, 103–108

    Google Scholar 

  13. Popkhadze N., First evidence of hyaloclastites at Madneuli deposit, Bolnisi district, Georgia, Bulletin of the Georgia National Academy of Sciences, 6, 2012, 83–90

    Google Scholar 

  14. Mederer J., Moritz R., Ulianov A., Chiaradia M., Middle Jurassic to Cenozoic evolution of arc magmatsm during Neotethyssubduction and arccontinent collision in the Kapan zone, southern Armenia, Lithos, 2013, 177, 61–78

    Article  Google Scholar 

  15. McPhie J., Allen R., Facies architecture of mineralized submarine volcanic sequences: Cambrian Mount Read Volcanics, western Tasmania, Economic Geology, 87, 1992, 587–596

    Article  Google Scholar 

  16. McPhie J., Allen R., Submarine, silicic, syn-eruptive pyroclastic units in the Mount Read Volcanics, Western Tasmania: influences of vent setting and proximity on lithofacies characteristics. In: White J., Smellie J., Clague D., (Eds.), Explosive Subaqueous Volcanism: Geophysical Monograph Series, 140, 2003, 245–258

    Article  Google Scholar 

  17. Doyle M., McPhie J., Facies architecture of a silicic intrusion-dominated volcanic centre at Highway-Reward, Queensland, Australia, Journal of Volcanology and Geothermal Research, 99, 2000, 79–96

    Article  Google Scholar 

  18. Allen R., Weihed P., Svenson S., Setting of Zn-Cu-Au-Ag massive sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte District, Sweden, Economic Geology, 91, 1997, 1022–1053

    Article  Google Scholar 

  19. Gibson H., Galley A., Volcanogenic massive sulphidedeposits of the Archean, Norandadistrict, Quebec. In: Goodfellow W., [Ed.], Mineral deposits of Canada: A synthesis of major deposits, types district metallogeny, the evalution of geological provinces and exploration methods: Special Publication 5, Mineral Deposits Division, Geological Association of Canada, 533–552

  20. Rogers N., van Staal C., McNicoll V., Theriault R., Volcanology and tectonic setting of the northern Bathurst Mining Camp. Part 1. Extension and rifting of the Popelogan arc. In: Goodfellow W., McCutcheon S., Peter J., (Eds.), Massive Sulphide Deposits in the Bathurst Mining Camp, New brunswick, and Northern Maine, Economic Geology, 11, 2003, 157–179

    Google Scholar 

  21. Rosa C., McPhie J., Relvas J., Type of volcanoes hosting the massive sulfide deposits of the Iberian Pyrite Belt, Journal of Volcanology and Geothermal Research, 194, 2010, 107–12

    Article  Google Scholar 

  22. Adamia Sh., Zakariadze G., Ckhotua T., Sadradze N., Tsereteli N., Chabukiani A., Gventsadze A., Geology of the Caucasus, Turkish Journal of Earth Sciences, 20, 2011, 489–544

    Google Scholar 

  23. Sosson M., Rolland Y., Muller C., Danelian T., Menkonyan R., Kekelia S., Adamia Sh., Babazadech V., Kangarli T., Avagyan A., Galoyan G., Mosar J., Subduction, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights, Geological Society, London, Special Publications, 340, 2010, 329–352

    Article  Google Scholar 

  24. Zakariadze G., Yildirim D., Adamia Sh., Oberhansli R., Karpenko S., Bazulev B., Solov’eva N., Geochemistry and geochronology of the Neoproterozoic Pan-African Transcaucasian Massif (Republic of Georgia) and implications island arc evolution of the late Precambrian Arabian-Nubian Shield, Gondwana Research, 11, 2007, 92–108

    Article  Google Scholar 

  25. Vashakidze S., Gugushvili V., Geological map of Bolnisi district (1:50 000). Caucasian Institute of Mineral Resources, Tbilisi, Georgia, 2006

    Google Scholar 

  26. Gambashidze R., Nadareishvili G., Structure and stages of development of the Upper Cretaceous volcanogenic-sedimentary formation of SE Georgia. In G. A. Tvalchrelidze (ED) volcanism and formation of useful minerals in mobile regions of the Earth “Metsniereba”, 1987, Tbilisi, 152–171 (in Russian)

    Google Scholar 

  27. Apkhazava M., Late Cretaceous volcanism and volcanic structures of Bolnisi volcano-tectonic depression, Doctoral thesis, Caucasian Institute of mineral resources, 1–269, 1988

    Google Scholar 

  28. Gambashidze R., Geological development history of Georgia during the upper Cretaceous period. Metsniereba. Al. Janelidze Geological Institute of Georgian Academy of Science. Proceeding, new series 82, 1984, 1–111 (in Russian)

    Google Scholar 

  29. Migineishvili R., Gavtadze T., Age of the Madneuli Cu-Au deposit, Georgia: evidence from new nannoplankton data, Bulletin of the Georgia National Academy of Sciences, 4, 2010, 85–91

    Google Scholar 

  30. Moritz R., Selby D., Ovtcharova M., Mederer J., Melkonyan R., Havamkimyan S., Tayan R., Popkhadze N., Gugushvili V., Ramazanov V., Diversity of geodynamic settings during Cu,Au and Mo ore formation in the Lesser Caucasus: New age constraint, 1st Europian Mineralogical Conference, 2–6 September 2012, Frankfurt, Germany, abstract volume

  31. Cas R., Wright J., Subaqueous pyroclastic flows and ignimbrites: an assessment, Bulletin of Volcanology, 53, 1991, 357–380

    Article  Google Scholar 

  32. Pittari A., Cas R., Edgar C., Nichols H., Wolff J., Marti J., The influence of paleotopography on facies architecture and pyroclastic flow processes of a lithicrich ignimbrite in a high gradient setting: The Abrigo Ignimbrite, Tenerife, Canary Island, Journal of Volcanology and Geothermal Research, 152, 2006, 273–315

    Article  Google Scholar 

  33. Gibson H., Morton R., Hudak G., Submarine volcanic processes, deposits and environment favorable for the location of volcanic-associated massive sulfide deposits, Reviews in Economic Geology, 8, 1998, 13–51

    Google Scholar 

  34. Sohn Y., Son M., Jeong J., Jeon Y., Eruption and emplacement of a laterally extensive, crystal-rich, and pumice free ignimbrite (the Cretaceous Kusandong Tuff, Korea), Sedimentary Geology, 220, 2009, 190–203

    Article  Google Scholar 

  35. Lorenz V., Vesiculated tuffs and associated features, Sedimentology, 21, 1974, 273–291

    Article  Google Scholar 

  36. Capaccioni B., Coniglio S., Varicolored and vesiculated tuffs from La-Fossa Volcano, Vulcano Island (Aeolian Archipelago, Italy) — Evidence of syndepositional alteration processes, Bulletin of Volcanology, 57(1), 1995, 61–70

    Article  Google Scholar 

  37. Cas R. A. F., Submarine volcanism — eruption styles, products, and relevance to understanding the hostrock successions to volcanic-hosted massive sulfide deposits, Economic Geology and the Bulletin of the Society of Economic Geologists, 87(3), 1992, 511–541

    Article  Google Scholar 

  38. Allen R., False pyroclastic textures in altered silicic lavas, with implications for volcanic-associated mineralization, Economic Geology, 85, 1988, 1424–1446

    Article  Google Scholar 

  39. McPhie J., Doyle M., Allen R., Volcanic textures: A guide to the interpretation of textures in volcanic rocks. Centre for Ore Deposits and Exploration Studies, University of Tasmania, Hobart, 1993, 1–198

  40. Soriano C., Giordano G., Cas R., Riggs N., Porreca M., Facies architecture, emplacement mechanisms and eruption style of the submarine andesite El Barronal complex, Cabo de Gata, SE Spain, Journal of Volcanology and Geothermal Research, 264, 2013, 210–222

    Article  Google Scholar 

  41. Soriano C., Riggs N., Giordano G., Porreca M., Conticelli S., Cyclic growth and mass wasting of submarine Los Frailes lava flow and dome complex in Cabo de Gata, SE Spain, Journal of Volcanology and Geothermal Research, 231, 2012, 72–86

    Article  Google Scholar 

  42. Németh K., Pécskay Z., Martin U., Gméling K., Molnár F., Cronin S. J., Hyaloclastites, peperites and soft-sediment deformation textures of a shallow subaqueous Miocene rhyolitic dome-cryptodome complex, Pálháza, Hungary. In: K. Thomson and N. Petford (Editors), Structure and Emplacement of High-Level Magmatic Systems. Geological Society, London, Special Publications. The Geological Society of London, Bath, UK, 2008, 61–83

    Google Scholar 

  43. Schmincke U., Behncke B., Grasso M., Raffi S., Evolution of the northwestern Iblean Mountains, Sicily: uplift, Plicocene/Pleistocene sea-level changes, paleoenvironment, and volcanism, Geol. Rundsch., 86(3), 1997, 637–669

    Article  Google Scholar 

  44. Lexa J., Seghedi I., Németh K., Szakács A., Koneĉny V., Pécskay Z., Fülöp A., and Kovacs, M., Neogene-Quaternary volcanic forms in the Carpathian-Pannonian Region: a review, Central European Journal of Geosciences, 2(3), 2010, 207–270

    Article  Google Scholar 

  45. Allen R., Stadlbauer E., and Keller J., Stratigraphy of the Kos Plateau Tuff: product of a major Quaternary explosive rhyolitic eruption in the eastern Aegean, Greece, International Journal of Earth Sciences, 88(1), 1999, 132–156

    Article  Google Scholar 

  46. Stewart L., and McPhie J., Internal structure and emplacement of an Upper Pliocene dacitecryptodome, Milos Island, Greece, Journal of Volcanology and Geothermal Research, 124(1–2), 2003, 129–148

    Article  Google Scholar 

  47. Stewart L., and McPhie J., Facies architecture and Late Pliocene-Pleistocene evolution of a felsic volcanic island, Milos, Greece, Bulletin of Volcanology, 68(7–8), 2006, 703–726

    Article  Google Scholar 

  48. Scutter R., Cas R. A. F., Moore L., and de Rita D., Facies architecture and origin of a submarine rhyolitic lava flow-dome complex, Ponza, Italy, Journal of Geophysical Research-Solid Earth, 103(B11), 1998, 27551–27566

    Article  Google Scholar 

  49. Gibson H., Watkinson D., Volcanogenic massive sulfide deposits of the Noranda cauldron and shield volcano, Quebec: Canadian Institute Mining Metallurgy, 43, 1990, 119–132

    Google Scholar 

  50. Furnes H., Fridleifsson I., Atkins F., Subglasial volcanics. On the formation of acid hyaloclastites, Journal of Volcanology and Geothermal Research, 8, 1980, 95–110

    Article  Google Scholar 

  51. Setterfield T., Hodder R., Gibson H., Watkins J., The McDougall-Despina fault set, Noranda, Quebec: Evidence for fault-controlled volcanism and hydrothermal fluid flow, Exploration and Mining Geology, 4, 1995, 381–393

    Google Scholar 

  52. Bull F., and McPhie J., Facies architecture of the Early Devonian Ural Volcanics, New South Wales, Aust. J. Earth Sci., 2006, 53(6): 919–945

    Article  Google Scholar 

  53. Gifkins C., McPhie J., Allen R., Pumiceous rhyolitic peperite in ancient submarine volcanic successions, Journal of Volcanology and Geothermal Research, 114, 2002, 181–203

    Article  Google Scholar 

  54. Winchester J., Floyd P., Geochemical discrimination of different magma series and their differentiation products using immobile elements, Chemical Geology, 20, 1977, 325–343

    Article  Google Scholar 

  55. Yamagishi H., Dimroth E., A composition of Miocene and Archean rhyolite hyaloclastites: evidence for hot fluid rhyolite lava, Journal of Volcanology and Geothermal Research, 23, 1985, 337–355

    Article  Google Scholar 

  56. Large R., Gemmell, Paulick H., Huston L., The alteration box plot: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits, Economic geology, 96, 2001, 957–971

    Google Scholar 

  57. Gifkins C., Herrmann W., Large R., Altered volcanic rocks: A guide to description and interpretation. Centre for Ore Depisit Research (CODES), University of Tasmania, 1–275

  58. Skilling P., White L., and McPhie J., Peperite: a review of magma-sediment mingling, Journal of Volcanology and Geothermal Research, 114(1–2), 2002, 1–17

    Article  Google Scholar 

  59. Doyle G., Clast shape and textural associations in peperite as a guide to hydromagmatic interactions: Upper Permian basaltic and basaltic andesite examples from Kiama, Australia. Aust. J. Earth Sci., 47(1), 2000, 167–177

    Article  Google Scholar 

  60. White L., McPhie J., and Skilling I., Peperite: a useful genetic term, Bulletin of Volcanology, 62, 2000, 65–66

    Article  Google Scholar 

  61. DeRita D., Giordano G., Cecili A., A model for submarine rhyolite dome growth:Ponza Island (central Italy), Journal of Volcanology and Geothermal Research, 107, 2001, 221–239

    Article  Google Scholar 

  62. Lexa J., Seghedi I., Németh K., Szakács A., Koneĉny V., Pécskay Z., Fülöp A., and Kovacs M., Neogene-Quaternary volcanic forms in the Carpathian-Pannonian Region: a review, Central European Journal of Geosciences, 2(3), 2010, 207–270

    Article  Google Scholar 

  63. Németh K., Pécskay Z., Martin U., Gméling K., Molnár F., and Cronin J., Hyaloclastites, peperites and soft-sediment deformation textures of a shallow subaqueous Miocene rhyoliticdomecryptodome complex, Pálháza, Hungary. In: K. Thomson and N. Petford (Editors), Structure and Emplacement of High-Level Magmatic Systems. Geological Society, London, Special Publications. The Geological Society of London, Bath, UK, 2008, 61–83

    Google Scholar 

  64. Schumacher R., Schmincke H., Internal structure and occurrence of accretionary lapilli — a case study at Laacher See Volcano, Bulletin of Volcanology, 53, 1991, 612–634

    Article  Google Scholar 

  65. Mugge O., Untersuchungen uber die Lenneporphyre in Westfalen und den angrenzenden Gebieten, N Jb Geol Palaont Beih, 8, 1983, 535–721

    Google Scholar 

  66. Heyckendorf K., Dieunterevonischen Lenne-Vulkanite im nordstichen Rheinischen Schiefergebirge. Beitrage zur Stratigraphie, Paleogeographie, Petrographie und Geochemie. PhD-thesis Universitat Hamburg, 1985, 1–363

    Google Scholar 

  67. Bateson J. H., Accretionary lapilli in a geosynclinal environment, Geol Mag, 102, 1965, 1–7

    Article  Google Scholar 

  68. Fiske RS, Matsuda T., Submarine equivalents of ash flows in the Tokiwa Formation, Japan, Am J Sci 262, 1964, 76–106

    Article  Google Scholar 

  69. Vierect L. G., Taylor P. N., Parson L. M., Morton A. C., Hertogen J., Gibson I. L., and the OPD Leg 104 Scientific Party. Origin of the Paleogene Voring Plateau volcanic sequence. In: AC Morton, LM Parson (eds) Early Tertiary volcanism and the opening of the NE Atlantic, Geol Soc London Spesial Publ, 39, 1989, 69–83

    Google Scholar 

  70. Graup G., Terrestrial chondrules, glass apherules, and accretionary lapilli from the suevite, Ries Crater, Germany, Earth Planet Sci Lett, 55, 1981, 407–418

    Article  Google Scholar 

  71. Cas R., Submarine Volcanism: eruption styles, products, and relevance to understanding the host rock successions to volcanic-hosted massive sulfide deposits, Economic Geology, 87, 1992, 511–547

    Article  Google Scholar 

  72. Allen R., Reconstruction of the tectonic, volcanic, and sedimentary setting of strongly deformed Zn, Cu massive sulfide deposits at Benambra, Victoria, Economic geology, 87, 1992, 825–854

    Article  Google Scholar 

  73. Rosa C., McPhie J., Relvas J., Type of volcanoes hosting the massive sulfide deposits of the Iberian Pyrite Belt, Journal of Volcanology and Geothermal Research, 194, 2010, 107–126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nino Popkhadze.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popkhadze, N., Moritz, R. & Gugushvili, V. Architecture of Upper Cretaceous rhyodacitic hyaloclastite at the polymetallic Madneuli deposit, Lesser Caucasus, Georgia. cent.eur.j.geo. 6, 308–329 (2014). https://doi.org/10.2478/s13533-012-0182-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13533-012-0182-z

Keywords

Navigation