Skip to main content
Log in

Assessment of surface runoff depth changes in Sǎrǎţel River basin, Romania using GIS techniques

  • Research Article
  • Published:
Central European Journal of Geosciences

Abstract

Sǎrǎţel River basin, which is located in Curvature Subcarpahian area, has been facing an obvious increase in frequency of hydrological risk phenomena, associated with torrential events, during the last years. This trend is highly related to the increase in frequency of the extreme climatic phenomena and to the land use changes. The present study is aimed to highlight the spatial and quantitative changes occurred in surface runoff depth in Sǎrǎţel catchment, between 1990–2006. This purpose was reached by estimating the surface runoff depth assignable to the average annual rainfall, by means of SCS-CN method, which was integrated into the GIS environment through the ArcCN-Runoff extension, for ArcGIS 10.1. In order to compute the surface runoff depth, by CN method, the land cover and the hydrological soil classes were introduced as vector (polygon data), while the curve number and the average annual rainfall were introduced as tables. After spatially modeling the surface runoff depth for the two years, the 1990 raster dataset was subtracted from the 2006 raster dataset, in order to highlight the changes in surface runoff depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaume E., Livet M., Desbordesc M., Villeneuve J.-P., Hydrological analysis of the river Aude, France, flash flood on 12 and 13 November 1999, Journal of Hydrology, 286, 2004, 135–154

    Article  Google Scholar 

  2. Pradhan B, Youssef A. M., A 100-year maximum flood susceptibility mapping using hydrological and hydrodynamic models: a case study, Journal of Flood Risk Management, 4,(3), 2011, 189–202

    Article  Google Scholar 

  3. Youssef, A., Pradhan, B., Hassan, A. M., Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery, Environmental Earth Sciences, 62, 2011, 3, 611–623

    Article  Google Scholar 

  4. Smith G., Flash Flood Potential: Determining the Hydrologic Response of FFMP Basins to Heavy Rain by Analyzing Their Physiographic Characteristics, 2003, http://www.cbrfc.noaa.gov/papers/ffp_wpap.pdf

    Google Scholar 

  5. Zaharia L., Minea G., Ioana-Toroimac G., Barbu R., Sârbu I., Estimation of the Areas with Accelerated Surface Runoff in the Upper Prahova Watershed (Romanian Carpathians), 2012, http://balwois.com/2012/USB/papers/595.pdf

    Google Scholar 

  6. Prǎvǎlie R., Costache R., The analysis of the susceptibility of the flash-floodsÊij genesis in the area of the hydrographical basin of Bâsca Chiojdului river, Forum Geografic, 2014, XIII, 1. Available online. DOI:10.5775/fg/2067-4635.2014.071.i

    Google Scholar 

  7. Minea G., Assessment of the Flas-Flood Potential of Basca River Catchment (Romania) based on Physiographic Factors, Central European Journal of Geosciences 5,(3), 2013, 449 1–10

    Article  Google Scholar 

  8. Kumar Pramod, Tiwart K. N., Pal D. K., Establishing SCS Runoff Curve Number from IRS Digital Data Base, Journal of the Indian Society of Remote Sensing, 19(4), 1991, 245–252

    Article  Google Scholar 

  9. Mack Mary J., HER-Hhydrologic evaluation of runoff; The Soil Conservation Service Curve Number technique as an interactive computer model, Computers & Geosciences, 21(8), 1995, 929–935

    Article  Google Scholar 

  10. Scozzafava M., Tallini M., Net Infiltration in the Gran Sasso Massif of Central Italy using Thornthwaite water budget and curve-number method, Hydrogeology Journal, 9(5), 2001, 461–475

    Article  Google Scholar 

  11. Xiaoyong Z., Min-Lang H., ArcCN-Runoff: an ArcG.I.S. tool for generating curve number and runoff maps, Environmental Modelling & Software, 2004, XX

    Google Scholar 

  12. Duncan O. J., Tollner E. W., Ssegane H., McCutcheon S. C., Curve Number approaches to estimate drainage from a Yard Waste Composting Pad, Applied Engineering in Agriculture, 29(2), 2013, 201–208

    Article  Google Scholar 

  13. Al-Hasan A. A. S., Mattar Y. E-S., Mean runoff coefficient estimation for ungauged streams in the Kingdom of Saudi Arabia, Arabian Journal of Geosciences, 2013, Available online, DOI:10.1007/s12517-013-0892-7

    Google Scholar 

  14. Mahmoud S. H., Mohammad E. S., Alazba A. A., Determination of potential runoff coefficient for Al-Baha Region, Saudi Arabia using GIS, Arabian Journal of Geosciences, 2014, Available online, DOI:10.1007/s12517-014-1303-4

    Google Scholar 

  15. Haidu I., Crǎciun, A. I., Bilasco S., The SCS-CN model assisted by G.I.S — alternative estimation of the hydric runoff in real time, Geographia Technica, 2(1), 2007, 1–7

    Google Scholar 

  16. Bilasco S., Implementarea GIS Ãon modelarea viiturilor pe versanti, Casa Cǎrtii de Stiintǎ Cluj-Napoca, 2008

    Google Scholar 

  17. Minea G., Bazinul hidrografic al râului Bâsca — Studiu de hidrogeografie, tezǎ de doctorat, Universitatea din Bucureşti, Facultatea de Geografie, Bucureşti, 2011

    Google Scholar 

  18. Gyory Maria-Mihaela, Haidu I., Unit hydrograph generation for the ungauged subwatershed in the Monroştia Basin, Geographia Technica, 6(2), 2011, 23–29

    Google Scholar 

  19. Domniţa M., Runoff modeling using GIS. Application in torrential basins in the 591 Apuseni Mountains, Ph.D Thesis, Cluj Napoca. 2012

    Google Scholar 

  20. Costache R., Using GIS techniques for assessing Lag time and Concentration time in small river basins. Case study:Pecineaga river basin, Romania, Geographia Technica, 9(1), 2014, 31–38

    Google Scholar 

  21. Elbialy S., Mahmoud A., Pradhan B., Buchroithner M., Application of spaceborne SAR data for extraction of soil moisture and its use in hydrological modelling at Gottleuba Catchment, Saxony, Germany, Journal of Flood Risk Management, 7(2), 2014, 159–175

    Article  Google Scholar 

  22. Hernandez M., Miller S. N., Goodrich D. C., Goff B. F., Kepner W. G., Edmonds C. M., Jones K. B., Modeling runoff response to land cover and rainfall spatial variability in semi-arid watersheds, Environmental Monitoring And Assessment, 64, 2000, 285–298

    Article  Google Scholar 

  23. Jetten V. G., LISEM User Manual. Utrecht Center for Environment and Landscape Dynamics, Utrecht University, Utrecht, 2002

    Google Scholar 

  24. Zhang Y., Wei H., Nearing M. A., Effects of antecedent soil moisture on runoff modeling in small semiarid watersheds of southeastern Arizona, Hydrological Earth System Science, 15(10), 2011, 3171–3179

    Article  Google Scholar 

  25. Billa L., Assilzadeh H., Mansor S., Mahmud A. R., Ghazali A. H., Comparison of recorded rainfall with quantitative precipitation forecast in a rainfall-runoff simulation for the Langat River basin, Malaysia, Central European Journal of Geosciences, 3(3), 2011, 309–317

    Article  Google Scholar 

  26. Hegedus P, Czigany S., Balatony L., Pirkhoffer E, Analysis of soil boundary conditions of flash-floos in a small basin in SW Hunhary, Central European Journal of Geosciences, 5(1), 2013, 97–111

    Article  Google Scholar 

  27. Ghoneim E., Foody G., M., Assessing flash flood hazard in an arid mountainous region, Arabian journal of Geosciences, 6(4), 2013, 1191–1202

    Article  Google Scholar 

  28. AlFugura A., Billa, L., Pradhan B., Mohamed T.A., Rawashdeh S., Coupling of hydrodynamic model and aerial photogrammetry-derived digital surface model for flood simulation scenarios using GIS: Kuala Lumpur flood, Malaysia, Disaster Advances, 4(4), 2011, 20–28

    Google Scholar 

  29. Garcia-Ruiz J.M., Lasanta T., Marti C., Gonzales C., White S., Ortigosa L., Flano P.R., Changes in Runoff and Erosion as a Consequence of Land-Use Changes in the Central Spanish Pyrenees, Physics and Chemistry of the Earth, 20(3), 1995, 301–307

    Article  Google Scholar 

  30. Haverkamp S., Fohrer N., & Frede H.G., Assessment of the effect of land use patterns on hydrologic landscape functions: a comprehensive GIS based tool to minimize model uncertainty resulting from spatial aggregation, Hydrological Processes, 19(3), 2005, 715–727

    Article  Google Scholar 

  31. Hernández-Guzmán R, Ruiz-Luna A, & Berlanga-Robles CA., Assessment of runoff response to landscape changes in the San Pedro subbasin (Nayarit, Mexico) using remote sensing data and GIS, Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 43(12), 2008, 1471–1482

    Google Scholar 

  32. Descroix L., Esteves M., Souley Yéro K., Rajot J.-L., Malam Abdou M., Boubkraoui S., Lapetite J. M., Dessay N., Zin I., Amogu O., Bachir A., Bouzou Moussa I., Le Breton E., Mamadou I., Runoff evolution according to land use change in a small Sahelian catchment, Hydroogy and Earth System Scences, 8(1), 2011, 1569–1607

    Article  Google Scholar 

  33. Costea G., Deforestation process consequences upon surface runoff coefficients. Catchment level case staudy from the Apuseni Mountains, Romania, Geographia Technica, 8(1), 2013, 28–33

    Google Scholar 

  34. Costache R., Fontanine I., Land use changes in the Subcarpathian area between Buzau and Slanic rivers, during 1990–2006 and their consequnces on surface runoff, Riscuri si catastrofe, 13(2), 2013, 171–182

    Google Scholar 

  35. Drobot R., Metodologie de determinare a bazinelor hidrografice torentiale Ãőn care se aflǎ aşezǎri umane expuse pericolului de viituri rapide, Contract de Cercetare, Universitatea Tehnicǎ de Construcţii, Bucureşti, 2007

    Google Scholar 

  36. Pisota I., Zaharia Liliana & Diaconu D., Hidrologie (Ediţia a II-a revizuitǎ şi adǎugitǎ), Editura Universitarǎ Bucureşti, Bucureşti, 2010

    Google Scholar 

  37. Arghiriade C., Rolul hidrologic al padurii. Editura Ceres, Bucharest, 1977

    Google Scholar 

  38. Engineering Staff. National Engineering Handbook. USDA-NRCS, Engineering Division. U.S. Gov. Print. Office, Washington DC, Part 630, Section 4, Chapter 7, 2007

  39. Ponce V. M., Hawkins R. H., Runoff curve number: has it reached maturity, Journal of Hydrologic Engineering, 1(1), 1996, 11–19

    Article  Google Scholar 

  40. Dawod G. M., Mirza M. N., Al-Ghamdi K. A., Assement of several flood estimation methodologies in Makkah metropolitan area, Saudi Arabia, Arabian Journal of Geoscience, 6(3), 2013, 985–993

    Article  Google Scholar 

  41. Masoud A. A., Runoff modeling of the wadi system for estimating flash-flood and groundwater recharge potential in Southern Sinai, Egypt, Arabian Journal of Geoscience, 4(5–6), 2011, 785–801

    Article  Google Scholar 

  42. Abdel-Latif A., Sherief Y., Morphometric analysis and flash-floods of Wadi Sudr and Wadi Wardan, Gulf of Suez, Egypt: using digital elevation model, Arabian Journal of Geoscience, 5(2), 2012, 181–195

    Article  Google Scholar 

  43. Corine Land Cover (2006), raster data, European Environment Agency (eea.europa.eu)

    Google Scholar 

  44. The soils map in electronic format, 1:200,000, ICPA Bucureşti

  45. National Meteorological Administration, 2013

  46. National Institute of Hydrology and Water Management, 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costache Romulus.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romulus, C., Iulia, F. & Ema, C. Assessment of surface runoff depth changes in Sǎrǎţel River basin, Romania using GIS techniques. cent.eur.j.geo. 6, 363–372 (2014). https://doi.org/10.2478/s13533-012-0181-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13533-012-0181-0

Keywords

Navigation