Skip to main content
Log in

Geochemistry and geodynamics of the Mawat mafic complex in the Zagros Suture zone, northeast Iraq

  • Research Article
  • Published:
Central European Journal of Geosciences

Abstract

The Iraqi Zagros Orogenic Belt includes two separate ophiolite belts, which extend along a northwest-southeast trend near the Iranian border. The outer belt shows ophiolite sequences and originated in the oceanic ridge or supra-subduction zone. The inner belt includes the Mawat complex, which is parallel to the outer belt and is separated by the Biston Avoraman block. The Mawat complex with zoning structures includes sedimentary rocks with mafic interbedded lava and tuff, and thick mafic and ultramafic rocks. This complex does not show a typical ophiolite sequences such as those in Penjween and Bulfat. The Mawat complex shows evidence of dynamic deformation during the Late Cretaceous. Geochemical data suggest that basic rocks have high MgO and are significantly depleted in LREE relative to HREE. In addition they show positive ɛ Nd values (+5 to+8) and low 87Sr/86Sr ratios. The occurrence of some OIB type rocks, high Mg basaltic rocks and some intermediate compositions between these two indicate the evolution of the Mawat complex from primary and depleted source mantle. The absence of a typical ophiolite sequence and the presence of good compatibility of the source magma with magma extracted from the mantle plume suggests that a mantle plume from the D″ layer is more consistent as the source of this complex than the oceanic ridge or supra-subduction zone settings. Based on our proposed model the Mawat basin represents an extensional basin formed during the Late Paleozoic to younger along the Arabian passive margin oriented parallel to the Neo-Tethys oceanic ridge or spreading center. The Mawat extensional basin formed without creation of new oceanic basement. During the extension, huge volumes of mafic lava were intruded into this basin. This basin was squeezed between the Arabian Plate and Biston Avoraman block during the Late Cretaceous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson D.L., Isotopic evolution of the mantle: the role of magma mixing. Earth and Planetary Science Letters., 1982, 57, 1–12

    Article  Google Scholar 

  2. Morgan P., Baker, B.H., Introduction-processes of continental rifting. Tectonophysics., 1983, 94, 1–10

    Article  Google Scholar 

  3. Morgan, W.J., Convection plumes in lower mantle. Nature, 1971, 230, 42–43

    Article  Google Scholar 

  4. Davies H.L., Sun S.S., Frey F.A., Gautier I., McCulloch M.T., Price R.C., Bassias Y., Leclaire L., Basalt basement from the Kerguelen Plateau and the trail of a Dupal plume. Journal of Mineralogy and Petrology, 1989, 103, 457–469

    Article  Google Scholar 

  5. Griffiths R.W., Campbell I.H., Stirring and structure in mantle starting plumes. Earth and Planetary Science Letters., 1990, 99, 66–78

    Article  Google Scholar 

  6. Davies J.H., Bunge H.P., Are splash plumes the origin of minor hotspots? Geology., 2006, 34, 349–352

    Article  Google Scholar 

  7. Hawkesworth C., Scherstï£in A., Mantle plumes and geochemistry. Chemical Geology., 2007, 241, 319–331

    Article  Google Scholar 

  8. McKenzie D., Bickle M.J., The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology., 1988, 29, 625–679

    Article  Google Scholar 

  9. King S.D., Anderson D.L., Edge-driven convection. Earth and Planetary Science Letters., 1998, 160, 289–296.

    Google Scholar 

  10. White R., McKenzie D., Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. Journal of Geophysical Research., 1989, 94, 7685–7729

    Article  Google Scholar 

  11. Elkins-Tanton L.T., Hager B.H., Melt intrusion as a trigger for lithospheric foundering and eruption of the Siberian flood basalt. Geophysical Research Letters., 2000, 27, 3937–3940

    Article  Google Scholar 

  12. Elkins-Tanton L.T., Continent magmatism caused by lithospheric delamination. In: Foulger G.G., Natland J.H., Presnall D.C., Anderson D.L. (Eds.), Plates, Plumes, and Paradigms. Geological Society of America Special Paper., 2005, 388, 449–462

    Google Scholar 

  13. Miller G.H., Miller C.F., Tertiary extension-related volcanism, Old Woman Mountains area, eastern Mojave Desert, California. Journal of Geophysical Research., 1991, 96, 629–643

    Google Scholar 

  14. Herzberg C., Depth and degree of melting of komatiites. Journal of Geophysical Research., 1992, 97, 4521–4540

    Article  Google Scholar 

  15. Nisbet E.G., Cheadle M.J., Arndt N.T., Bickle M.J., Constraining the potential temperature of the Archaean mantle: A review of the evidence from komatiites. Lithos., 1993, 30, 291–307

    Article  Google Scholar 

  16. Hoang N., Uto K., Geochemistry of Cenozoic basalts in the Fukuoka district (northern Kyushu, Japan): implications for asthenosphere and lithospheric mantle interaction. Chemical Geology., 2003, 198, 249–268

    Article  Google Scholar 

  17. Tang Y.J., Zhang H.F., Ying J.F., Asthenospherelithospheric mantle interaction in an extensional regime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chemical Geology, 2006, 233, 309–327

    Article  Google Scholar 

  18. Chakrabarti R., Basu A.R., Basu A.R., Santo A.P., Tedesco D., Vaselli O., Isotopic and geochemical evidence for a heterogeneous mantle plume origin of the Virunga volcanics, Western rift, East African Rift system. Chemical Geology., 2009, 259, 273–289

    Article  Google Scholar 

  19. Starkey N.A., Fitton J.G., Stuart F.M., Larsen L.M., Melt inclusions in olivines from early Iceland plume picrites support high 3He/4He in both enriched and depleted mantle. Chemical Geology., 2012, 54, 306–307

    Google Scholar 

  20. Bolton C.M.G., Geological Map, Kurdistan Series, scale 1: 100 000, Sheet K4, Rania. GEOSUR., int. rep., 1958, no. 276.

    Google Scholar 

  21. Jassim S.Z., Goff J.C., Geology of Iraq. Dolin, Prague and Moravian Museum, Brno., 2006

    Google Scholar 

  22. Al-Mehiadi, H., Geological investigation of Mawat, Chwarta area, NE Iraq. Unpublished report, SOM Library., 1975, No. 609

    Google Scholar 

  23. Buday Y., Jassim S.Z., The regional Geology of Iraq, v.2: Tectonism, magmatism and Metamorphism. Geol.Min.Inv., Baghdad., 1987

    Google Scholar 

  24. Al-Saadi A.J.H., Petrology and geochemistry of volcanic rocks in Northeastern Thrust Zone, NE-Iraq. Unpublished M.Sc Thesis, University of Baghdad., 1990

    Google Scholar 

  25. Stocklin J., Structural history and tectonic of Iran; a review. Am. Assoc. Petroleum Geologists Bull., 1968, 52, 1229–1258

    Google Scholar 

  26. Jassim S.Z., Geology of the central sector of the Mawat Igneous Complex, Northeastern Iraq. Jour. Geo. Soc. Iraq., 1972, 5, 83–92

    Google Scholar 

  27. Al-Hassan M.I., Comparative petrologic study between Mawat and Penjwin Igneous Complexes, Northeastern Iraq. Unpublished M.Sc. Thesis, Baghdad University., 1975

    Google Scholar 

  28. Allahyari K., Saccani E., Pourmoafi M., Beccaluva L., Masoudi F., Petrology of mantle pridotites and intrusive mafic rocks from the Kermanshah ophiolitic complex (Zagros belt, Iran). Implications for the geodynamic evolution of the Neo-Tethyan oceanic branch between Arabia and Iran. Ofioliti., 2010, 35, 71–90

    Google Scholar 

  29. Azizi H., Chung S.L., Tanaka T., Asahara, Y., Isotopic dating of the Khoy metamorphic complex (KMC), northwestern Iran: A significant revision of the formation age and magma source. Precambrian Research., 2011a, 185, 87–94

    Article  Google Scholar 

  30. Azizi H., Tanaka T., Asahara Y., Chung S.L., Zarinkoub, M.H., Discrimination of the age and tectonic setting for magmatic rocks along the Zagros thrust zone, northwest Iran, using the zircon U-Pb age and Sr-Nd isotopes. Journal of Geodynamics., 2011b, 52, 304–320

    Article  Google Scholar 

  31. Saccani E., Allahyari K., Beccaluva L., Bianchini G., Geochemistry and petrology of the Kermanshah ophiolites (Iran): Implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean. Gondwana Research., 2012, article in press

    Google Scholar 

  32. Mohammad Y.O., Serpentines and their tectonic signature along the northwest Zagros thrust zone, Kurdistan Region, Iraq Arab. J. Geosciences., 2011, 4, 69–83, doi 10.1007/s12517-009-0080-y

    Google Scholar 

  33. Ismail S.A., Mirza T.M., Carr P.F., Platinum-group elements geochemistry in podiform chromitites and associated peridotites of the Mawat ophiolite, northeastern Iraq. Journal of Asian Earth Sciences., 2010, 37, 31–41

    Article  Google Scholar 

  34. Tanaka T., Togashi S., Kamioka H., Amakawa H., Kagami H., Hamamoto T., Yuhara M., et al., JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chemical Geology., 2000, 168, 279–281

    Article  Google Scholar 

  35. Le Bas M.J., LeMaitre R.W., Streckeisen A., Zanettin B., A chemical classification of volcanic rocks based on the total alkali silica diagram. Journal of Petrology., 1986, 27, 745–750

    Article  Google Scholar 

  36. Sun S.S., McDonough W.F., Chemical and isotopic systematic of oceanic basalts: implication for mantle composition and processes. In: Sunders, A.D., Norry, M.J. (Eds.), Magmatic in Oceanic Basins, Special Publication 42. Geological Society of London., 1989, 313–345

    Google Scholar 

  37. Fitton J.G., Saunders A.D., Norry M.J., Hardarson B.S., Taylor, R.N., Thermal and chemical structure of the Iceland plume. Earth and Planetary Science Letters., 1997, 153, 197–208

    Article  Google Scholar 

  38. Pearce J.A., Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos., 2008, 100, 14–4

    Article  Google Scholar 

  39. Manikyamba C., Kerrich, R., Geochemistry of alkaline basalts and associated high-Mg basalts from the Penakacherla Terrane, Dharwar craton, India: An Archean depleted mantle-OIB array. Precambrian Research., 2011, 188, 104–122

    Article  Google Scholar 

  40. Zheng J.P., Griffin W.L., Reilly S.Y., Hu B.Q., Zhang M., Tang H.Y., Su Y.P., Zhang Z H., Pearson N., Wang F.Z., Lu F.X., Continental collision and accretion recorded in the deep lithosphere of central China. Earth and Planetary Science Letters., 2008, 269, 497–507

    Article  Google Scholar 

  41. Aswad K., Aziz N.R.H., Koyi H.A., Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros Suture Zone, Kurdistan region, lraq. Geological Magazine., 2011, 148, 802–818

    Article  Google Scholar 

  42. Ali S.A., Geochemistry of Tethyan-Arc related volcanic rocks, NE lraq (PhD. Thesis). Wollongong, NSW, Australia, University of Wollongong., 2012

    Google Scholar 

  43. Ali S.A., Buckman S., Aswad K.J., Jones B.G., Ismail S.A., Nutman A.P., The tectonic evolution of a Neo?Tethyan (Eocene-Oligocene) island?arc (Walash and Naopurdan groups) in the Kurdistan region of the Northeast Iraqi Zagros Suture Zone. Island Arc., 2012, doi: 10.1111/iar.12007

    Google Scholar 

  44. Oweiss G.A., The Penjwin area, along the Zagros suture zone, as an example of collisional orogen. Tectonophysics, 1984, 101, 55–62

    Article  Google Scholar 

  45. Jassim S.Z., Geology of the central sector of the Mawat igneous complex, NE Iraq. Jour. Geol. Soc. Iraq., 1973, 6, 83–92

    Google Scholar 

  46. Mashek J., Etabi W., Petrology of the Mawat Igneousmetamorphic complex. NIMCO Lib. Unpublished report., 1973

    Google Scholar 

  47. Jassim S.Z., Al. Hassan M.I., Petrography and origin of the Mawat and Penjwin Igneous Complex: a comparison. Jour. Geol. Soc.Iraq, special issue., 1977, 169–210

    Google Scholar 

  48. Buda G., Al Hashimi W.S., Petrology of Mawat OphioliteComplex. Northeastren Iraq. Jour. Geol. Soc. Iraq., 1977, 10, 69–98

    Google Scholar 

  49. Zekaria M., B., M., Petrology and geochemistry of the southern part of Mawat ophiolite complex, Northeastern Iraq, Unpublished Msc.Thesis, Mosul University., 1992 (in Arabic)

    Google Scholar 

  50. Al-Samman A.H., Zekaria M.B., Younis, J.S., Geochemical variation of Mawat Ophiolite Volcanics, Waraz, NE Iraq. Raf. Jour.. 1996, Sci. 7, 55–67

    Google Scholar 

  51. Aswad K.J., Arc-continent collision in northeastern Iraq as evidenced by Mawat and Penjween ophiolite complexes. Raf. Jour. Sci., 1999, 10, 51–61

    Google Scholar 

  52. Koyi A., Petrochemistry, petrogenesis and Isotope dating of Walash volcanic rocks at Mawat-Chowarta area, NE Iraq, Unpublished MSc.Thesis, Universty of Mosul., 2006, 230p. (In Arabic)

  53. Farjo, S.F., Geochemistry and petrogenesis of the volcanic rocks of Mawat ophiolite complex, NE-Iraq, Unpublished MSc. Thesis, University of Mosul., 2006 (in Arabic).

    Google Scholar 

  54. Numan N.M.S., Major Cretaceous Tectonic Events in Iraq. Raf. Jour. Sci., 2000, 11, 32–52

    Google Scholar 

  55. Karim A., Berkhli M., et al., Le Visï£ien supï£irieur d’Azarhare (Maroc central): environnements de dï£ipï£it, datation et ï£ivolution diagï£inï£itique. Comptes Rendus Geoscience., 2005, 337, 525–532

    Article  Google Scholar 

  56. Ricou L.E., Tethys reconstructed plate’s continental fragments and their boundaris since 260 Ma from Central America to South-eastern Asia. Geodinamica Acta., 1994, 7, 169–218

    Google Scholar 

  57. Stampfli G.M., Tethyan oceans. Geological Society Special Publication., 2000, 173, 1–23

    Article  Google Scholar 

  58. Garfunkel Z., Origin of the Eastern Mediterranean basin: a reevaluation. Tectonophysics., 2004, 391, 11–34

    Article  Google Scholar 

  59. Pillevuit A., Marcoux J., et al., The Oman exotics: a key to the understanding of the Neotethyan geodynamic evolution. Geodinamica Acta., 1997, 10, 209–238

    Google Scholar 

  60. Brew D.S., Late Weichselian to early Holocene subaqueous dune formation and burial off the North Sea Northumberland coast. Marine Geology, 134., 1996, 203–211

    Article  Google Scholar 

  61. Aswad K.J., Elias E.M., Petrogenesis, Geochemistry, and Metamorphism of spilitized subvolcanic rocks of the Mawat Ophiolite Complex, NE Iraq. Ofiolitti., 1988, 13, 95–109

    Google Scholar 

  62. Agard P., Omrani J., Jolivet L., Mouthereau F., Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Geologische Rundschau., 2005, 94, 401–419

    Google Scholar 

  63. Azizi H., Moinevaziri H., Review of the tectonic setting of Cretaceous to Quaternary volcanism in northwestern Iran. Journal of Geodynamics., 2009, 47, 167–179

    Article  Google Scholar 

  64. Agard P., Omrani J., Jolivert L., Whitechurch H., Vrielynck B, Spakman W., Monie P., Meyer B., Wortel R., Zagros orogeny: A subduction-dominated process. Geological Magazine., 2011, 148, 692–725

    Article  Google Scholar 

  65. Verdel C., Wernicke B. P., Hassanzadeh J., Guest B., A Paleogene extensional arc flareup in Iran. Tectonics., 2011, 30(3), TC3008. http://dx.doi.org/10.1029/2010TC002809

    Article  Google Scholar 

  66. Buday T., The regional geology of Iraq, Stratigraphy and paleogeography. Edited by Kassab, I.M. and Jassim S.Z., Dar Al-Kutib publishing house, Mosel, Iraq., 1980

    Google Scholar 

  67. Passchier C.W., Trouw, R.A.J., Microtectonis, Springer Verlag., 2005

    Google Scholar 

  68. Hofmann A.W., Jochum K.P., Seufert M., White W.M., Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters., 1986, 79, 33–45

    Article  Google Scholar 

  69. McDonough W.F., Stosch H.G., et al., Distribution of titanium and the rare earth elements between peridotitic minerals. Contributions to Mineralogy and Petrology., 1992, 110, 321–328

    Article  Google Scholar 

  70. McDonough W.F., Sun, S.S., The composition of the Earth. Chemical Geology., 1995, 120, 223–253

    Article  Google Scholar 

  71. Rudnick R.L., Fountain D.M., Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics., 1995, 33, 267–309

    Article  Google Scholar 

  72. Chung S.L., Wang K.L., Crawford A.J., Kamenetsky V.S., Chen C.H., Lan C.Y., Chen, C.H., High-Mg potassic rocks from Taiwan: implications for the genesis of orogenic potassic lavas. Lithos., 2001, 59, 153–157

    Article  Google Scholar 

  73. Ludwig K.R., ISOPLOT: a plotting and regression program for radio-isotope data. U.S. Geol. Survey Open-File Report., 2009, 91–445

    Google Scholar 

  74. Steiger R.H., Jager E., Subcommission on geochronology: convention on the use decay constants in geoand cosmochronology. Earth and Planetary Science Letters., 1977, 36, 359–362

    Article  Google Scholar 

  75. Begemann, F., Kudwig K.R., Lugmair, G.W., Min K., Nyquist L.E., Patchett, P.J., Ben Othman D., White W.M., et al., 1989. The geochemistry of marine sediments, island arc magma genesis, and crustmantle recycling. Earth and Planetary Science Letters., 1989, 94, 1–21

    Article  Google Scholar 

  76. Taylor S.R., McLennan S.M., The Continental Crust: its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks. The Continental Crust: its Composition and Evolution. Blackwell., 1985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Azizi.

About this article

Cite this article

Azizi, H., Hadi, A., Asahara, Y. et al. Geochemistry and geodynamics of the Mawat mafic complex in the Zagros Suture zone, northeast Iraq. cent.eur.j.geo. 5, 523–537 (2013). https://doi.org/10.2478/s13533-012-0151-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13533-012-0151-6

Keywords

Navigation