Central European Journal of Geosciences

, Volume 6, Issue 1, pp 2–16 | Cite as

Relationship between MODIS based Aerosol Optical Depth and PM10 over Croatia

  • Sanja Grgurić
  • Josip Križan
  • Goran Gašparac
  • Oleg Antonić
  • Zdravko Špirić
  • Rodelise E. Mamouri
  • A. Christodoulou
  • Argyro Nisantzi
  • Athos Agapiou
  • Kyriakos Themistocleous
  • Kurt Fedra
  • Charalambos Panayiotou
  • Diofantos Hadjimitsis
Research Article

Abstract

This study analyzes the relationship between Aerosol Optical Depth (AOD) obtained from Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and ground-based PM10 mass concentration distribution over a period of 5 years (2008–2012), and investigates the applicability of satellite AOD data for ground PM10 mapping for the Croatian territory. Many studies have shown that satellite AOD data are correlated to ground-based PM mass concentration. However, the relationship between AOD and PM is not explicit and there are unknowns that cause uncertainties in this relationship.

The relationship between MODIS AOD and ground-based PM10 has been studied on the basis of a large data set where daily averaged PM10 data from the 12 air quality stations across Croatia over the 5 year period are correlated with AODs retrieved from MODIS Terra and Aqua. A database was developed to associate coincident MODIS AOD (independent) and PM10 data (dependent variable). Additional tested independent variables (predictors, estimators) included season, cloud fraction, and meteorological parameters — including temperature, air pressure, relative humidity, wind speed, wind direction, as well as planetary boundary layer height — using meteorological data from WRF (Weather Research and Forecast) model.

It has been found that 1) a univariate linear regression model fails at explaining the data variability well which suggests nonlinearity of the AOD-PM10 relationship, and 2) explanation of data variability can be improved with multivariate linear modeling and a neural network approach, using additional independent variables.

Keywords

MODIS AOD PM10 PM10-AOD relationship aerosol multivariate linear regression artificial neural network Croatia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    European Environment Agency. The European environment — state and outlook. Luxembourg: Publications Office of the European Union, 2010, ISBN 978-92-9213-152-4, doi:10.2800/57792 (2010)Google Scholar
  2. [2]
    Croatian Environment Agency. Annual report of air quality monitoring in Croatia for 2011. Document number: 25-12-2212/55 (2011) (www.azo.hr)Google Scholar
  3. [3]
    Villeneuve P.J., Goldberg M.S., Krewski D., Burnett R.T., Chen Y., Fine particulate air pollution and all-cause mortality within the Harward six-cities study:variations in risk by period of exposure. Annals of Epidemiology, 2002, 12, 568–576CrossRefGoogle Scholar
  4. [4]
    Tian J., Chen D., Spectral, spatial, and temporal sensitivity of correlating MODIS aerosol optical depth with ground-based fine particulate matter (PM2.5) across southern Ontario. Can. J. Remote Sensing, 2010, 36, 119–128CrossRefGoogle Scholar
  5. [5]
    Koelemeijer R.B.A., Homan C.D., Matthijsen, J., Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmospheric Environment, 2006, 40, 5304–5315CrossRefGoogle Scholar
  6. [6]
    Al-Saadi J., Szykman J., Pierce R. B., Kittaka C., Neil D., Chu D. A., Remer L., Gumley L., Prins E., Weinstock L., MacDonald C., Wayland R., Dimmick F. and Fishman J., Improving national air quality forecasts with satellite aerosol observations. Bulletin of the American Meteorological Society, 2005, 86, 1249–1261, doi:10.1175/BAMS-86-9-1249CrossRefGoogle Scholar
  7. [7]
    Engel-Cox J.A., Holloman C.H., Coutant B.W., Hoff R.M., Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ., 2004, 38, 2495–2509CrossRefGoogle Scholar
  8. [8]
    Chu D.A., Kaufman Y.J., Zibordi G., Chern J.D., Mao J., Li C., Holben B.N., Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectrora-diometer (MODIS), J. Geophys. Res., 2003, 108(D21), 4661, doi:10.1029/2002JD003179CrossRefGoogle Scholar
  9. [9]
    Wang J., Christopher S.A., Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: implications for air quality studies. Geophysical Research Letters, 2003, 30, 2095CrossRefGoogle Scholar
  10. [10]
    Gupta P., Christopher S.A., Wang J., Gehrig R., Lee Y.C., Kumar N., Satellite remote sensing of particulate matter and air quality over global cities. Atmos. Environ., 2006, 40, 5880–5892CrossRefGoogle Scholar
  11. [11]
    Dinoi A., Perrone M.R., Burlizz P., Application of MODIS Products for Air quality studies Over Southeastern Italy. Remote Sens., 2010, 2, 1767–1796CrossRefGoogle Scholar
  12. [12]
    Gupta P., Christopher S.A., Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 1. Multiple regression approach. J. Geophys. Res., 2009, 114, D14205, doi:10.1029/2008JD011496CrossRefGoogle Scholar
  13. [13]
    Engel-Cox J A., Hoff R.M., Rogers R., Dimmick F., Rush A.C., Szykman J.J., Al-Saadi J., Chu D.A., Zell E.R., Integrating lidar and satellite optical depth with ambient monitoring for 3-dimensional particulate characterization. Atmos. Environ., 2006, 40, 8056–8067CrossRefGoogle Scholar
  14. [14]
    Li C., Hsu N.C., Tsay S.C., A study of the potential application of satellite data in air quality monitoring and forecasting. Atmos. Environ., 2011, 35, 3663–3675CrossRefGoogle Scholar
  15. [15]
    Gupta P., Christopher S.A., Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach. J. Geophys. Res., 2009, 114, D20205, doi:10.1029/2008JD011497CrossRefGoogle Scholar
  16. [16]
    Wu Y., Guo J.Z.X., Tian X., Zhang J., Wang Y., Duan J., Li X., Synergy of satellite and ground based observations in estimation of particulate matter in eastern China. Science of the Total Environment, 2012, 433, 20–30CrossRefGoogle Scholar
  17. [17]
    Levy R.C., Remer L., Tanre D., Matoo S., Kaufman, Y.J., Algorithm for remote sensing of tropospheric aerosol over dark targets from MODIS: collections 005 and 051:Revision 2, 2009. http://modis-atmos.gsfc.nasa.gov/_docs/ATBD_MOD04_C005_rev2.pdf.Google Scholar
  18. [18]
    Remer L.A., Kaufman Y. J., Tanré D., Mattoo S., Chu D. A., Martins J. V, Li R.-R., Ichoku C., Levy R.C., Kleidman R.G., Eck T.F., Vermote E. and Holben B.N., The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 2005, 62, 947–973, doi:10.1175/JAS3385.1CrossRefGoogle Scholar
  19. [19]
    Chu D.A., Kaufman Y.J., Ichoku C., Remer L.A., Tanre D., Holben B.N., Validation of MODIS aerosol optical depth retrieval over land. Geophysical research letter, 2002, 29, 10.1029/2001GL013205Google Scholar
  20. [20]
    Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Wang W., Powers J.G., A description of the Advanced Research WRF Version 2, NCAR/TN-468+STR, NCAR TECHNICAL NOTE, 88., 2007Google Scholar
  21. [21]
    Chen F., Janjic Z., K. Mitchell. Impact of atmospheric surface layer parameterization in the new land-surface scheme of the NCEP Mesoscale Eta numerical model. Bound.-Layer Meteor., 1997, 185, 391–421CrossRefGoogle Scholar
  22. [22]
    Chen F., Dudhia J., Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Wea. Rev., 12001, 29, 569–585Google Scholar
  23. [23]
    Hong S.Y., Jade J.O., The WRF Single Moment 6 Class Microphysics Sheme (WSM6). Journal of the Korean Meteorological Society, 42,2, 2006, 129–151Google Scholar
  24. [24]
    Mlawer E.J., Taubman S.J., Brown P.D., Iacono M.J., Clough S.A., Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave, J. Geophys. Res., 102(D14), 1997, 16663–16682CrossRefGoogle Scholar
  25. [25]
    Hong S.Y., Dudhia J., Chen S.H., A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation, Mon. Wea. Rev., 2004, 132, 103–120CrossRefGoogle Scholar
  26. [26]
    Kain J.S., Fritsch J.M., Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The representation of cumulus convection in numerical models. Meteor. Monogr., 1993, 24, 165–170Google Scholar
  27. [27]
    Hrust L., Klaić B., Križan Z., Antonić J., Hercog O., Neural network forecasting of air pollutants hourly concentrations using optimized temporal averages of meteorological variables and pollutant concentrations. Atm. Environ., 2009, 43, 5588–5596CrossRefGoogle Scholar
  28. [28]
    Gardner M.V., Dorling S.R., Neural network modeling and prediction of hourly Nox nad NO2 concentration in urban air in London. Atmos. Environ. 1999, 33, 709–719CrossRefGoogle Scholar
  29. [29]
    Mallows C.L., Some Comments on CP”, Technometrics, 1973, 15(4), 661–675Google Scholar
  30. [30]
    Stevens J., Applied Multivariate Statistics for the Social Sciences. Taylor & Francis, New York, 2002Google Scholar
  31. [31]
    Bishop C.M., Neural networks for Pattern Recognition. Cylerdon Press, Oxford, 1995Google Scholar
  32. [32]
    ]_Haykin S., Neural network: a Comprehensive Foundation. Prentice Hall, Upper Saddle River, NJ, 1999Google Scholar
  33. [33]
    Wojciechowski M., Feed-forward neural network for python, Technical University of Lodz (Poland), Department of Civil Engineering, Architecture and Environmental Engineering, http://ffnet.sourceforge.net/, ffnet-0.7, 2011Google Scholar
  34. [34]
    Riedmiller M., Braun H., A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm, in H. Ruspini, editor, Proceedings of the 1993 IEEE International Conference on Neural Networks (ICNN), San Francisco, USA, 1993, 586–591, doi: 10.1109/ICNN.1993.298623CrossRefGoogle Scholar
  35. [35]
    Lyapustin A., Wang Y., Laszlo I., Kahn R., Korkin S., Remer L., Levy R., Reid J.S., Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. J. Geophys. Res., 2011, 116, D03211Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Sanja Grgurić
    • 1
    • 2
  • Josip Križan
    • 2
  • Goran Gašparac
    • 2
  • Oleg Antonić
    • 1
    • 2
    • 3
  • Zdravko Špirić
    • 1
  • Rodelise E. Mamouri
    • 4
  • A. Christodoulou
    • 4
  • Argyro Nisantzi
    • 4
  • Athos Agapiou
    • 4
  • Kyriakos Themistocleous
    • 4
  • Kurt Fedra
    • 5
  • Charalambos Panayiotou
    • 6
  • Diofantos Hadjimitsis
    • 4
  1. 1.Oikon Ltd.-Institute of Applied EcologyZagrebCroatia
  2. 2.Gekom — Geophysical and ecological modeling Ltd.ZagrebCroatia
  3. 3.Josip Juraj Strossmayer University of OsijekOsijekCroatia
  4. 4.Cyprus University of TechnologyLemesosCyprus
  5. 5.Environmental Software and ServicesGumpoldskirchenAustria
  6. 6.Atlantis Consulting Cyprus, LtdNicosiaCyprus

Personalised recommendations